Uma pista retangular para caminhada mede 100 por 250 metros. Deseja se marcar um ponto P, conforme figura a cima de modo um que o comprimento do percurso ABPA seja metade do comprimento total da pista. Calcule as distâncias entre os pontos B e P. (Fazer a conta por favor).
Anexos:
Soluções para a tarefa
Respondido por
29
Resposta:
distância BP= 105m
Explicação passo-a-passo:
perímetro total da pista= 2×100 + 2×250= 700m
o perímetro ABPA deve ter 350m
AP=145
BP=105
AB=100
Veja a figura anexa.
Anexos:
kaaueziin:
Muito obrigado!
Respondido por
4
distância entre B e P = 105m
comprimento da pista =2*100+2*250= 700m
ABPA= 700/2=350
APB=350-100= 250m
Seja C um ponto no vértice superior direito do retângulo.
Seja D o ponto médio da diagonal do retângulo
se APB=250 AP=PC
diagonal do retângulo =
√(250^2+100^2)=269,258
CD= diagonal/2=134,629
temos um triângulo retângulo PDC
PC=CD/(250/269,258)
PC=134.629/0,9273
PC=145
BP= 250-PC
BP=250-145
BP=105m
Perguntas interessantes