Um prisma equilátero de índice de refração np está em contato com dois meios, cujos índices de refração são na (ar) e nl (liquido). Um raio de luz incide sobre uma das superfícies do prisma com um ângulo de a = 30°, conforme mostra a figura abaixo:
Se np = 1,5 e na = 1,0 qual deve ser o índice de refração do liquido para termos reflexão total na interface prisma-liquido?
Soluções para a tarefa
Boa tarde,
O raio de luz é colinear a normal, portanto ele não sofre refração quando passa do ar para o prisma, quando passa do prisma para o líquido ele pode sofrer reflexão total.
Trace a normal na superfície de separação prisma - líquido, o prisma é equilátero, isso significa que o ângulo dr incidência do raio com a normal é 60°.
No caso de termos reflexão total:
Sen (L) = nl / np
Sen 60° = nl / (3/2)
(√3 / 2) = 2.nl / 3
4.nl = 3.√3
nl = 3.√3 / 4
Resposta:
Explicação:
Na interface Ar-prisma, o raio de luz continua se propagando em linha reta, sem sofrer desvio, por isso, pode-se considerar que o raio de luz no ar e no prisma fazem parte de uma única reta. Sabendo disso, pode-se aplicar o princípio matemático de duas retas paralelas (as linhas tracejadas marcadas por //) cortadas por uma transversal (o raio de luz); por esse princípio determina-se que o ângulo de incidência do raio de luz na interface prisma-líquido é de 30°, que, de acordo com as exigências da questão, também corresponderá ao ângulo limite.
Aplicando-se a lei de Snell na interface prisma-líquido, têm-se
sen 30° . = sen 90° .
=
Espero ter ajudado ; )