Pensando na soma dos ângulos internos de um polígono de quatro lados (quadriláteros), como fizemos para os triângulos, assinale quais dos argumentos apresentados abaixo você considera corretos. É interessante que, antes de indicar os argumentos, você verifique com diferentes quadriláteros o que ocorre com a soma de seus ângulos internos, procedendo do mesmo modo que com os triângulos.
a) A soma das medidas dos ângulos internos de um quadrilátero é 180º, como nos triângulos.
b) A soma dos ângulos internos de um quadrilátero tem medida igual a 360º porque quando encostados uns aos outros, eles formam "uma volta inteira".
c) A soma das medidas dos ângulos internos de um quadrilátero é 360º porque todo quadrilátero pode ser dividido em dois triângulos e daí temos 180º+ 180º = 360º
d) A soma das medidas dos ângulos internos de um quadrilátero é 360º porque todo quadrilátero tem os quatro ângulos medindo 90º e 4 . 90º = 360º.
#LivroDoEstudanteENCCEJA
Soluções para a tarefa
Os argumentos que considero correto são:
b) A soma dos ângulos internos de um quadrilátero tem medida igual a 360º porque quando encostados uns aos outros, eles formam "uma volta inteira".
c) A soma das medidas dos ângulos internos de um quadrilátero é 360º porque todo quadrilátero pode ser dividido em dois triângulos e daí temos 180º+ 180º = 360º .
Os quadrilátero são figuras geométricas planas (polígonos) formadas por 4 arestas, ou 4 lados. Podendo ser classificada como : quadrado, retângulo, losango, entre outros.
A soma dos ângulos internos de um quadrilátero equivale a 360º pois traçarmos uma linha na diagonal de um quadriláteros convexo obtemos dois triângulos. Segundo a regra dos ângulos internos do triângulo temos que sua soma é igual a 180º, portanto: 180º + 180º = 360º.
Outra explicação para a soma dos quadriláteros dá 360º é que, ao unirmos a ponta de 4 quadrados soma-se 360º. Uma vez que o quadrado possui todos os ângulos retos, ou seja : 90º + 90º + 90º + 90º = 360º
Para mais informações, acesse:
Quadriláteros :https://brainly.com.br/tarefa/1239899