Na figura, temos AB = AC e AE = AD. Sabendo
que o ângulo BAD mede 40°, calcule a medi-
da do ângulo CD E.
Anexos:
![](https://pt-static.z-dn.net/files/d90/90197b12d4fd802dda550b8ab563b96a.png)
Lukyo:
A resposta é 20°. Resposta segue nos próximos instantes.
Soluções para a tarefa
Respondido por
32
Caso tenha problemas para visualizar a resposta pelo aplicativo, experimente abrir pelo navegador: https://brainly.com.br/tarefa/8094875
_______________
Para melhor compreensão, veja figura em anexo a esta resposta.
De acordo com as informações do enunciado, temos que
•![\mathsf{med(B\widehat{A}D)=40^\circ;} \mathsf{med(B\widehat{A}D)=40^\circ;}](https://tex.z-dn.net/?f=%5Cmathsf%7Bmed%28B%5Cwidehat%7BA%7DD%29%3D40%5E%5Ccirc%3B%7D)
• O triângulo ABC é isósceles.
Logo, os ângulos da base são congruentes:
![\mathsf{med{(A\widehat{B}C)}=med{(A\widehat{C}B)}:=x\qquad\quad(i)} \mathsf{med{(A\widehat{B}C)}=med{(A\widehat{C}B)}:=x\qquad\quad(i)}](https://tex.z-dn.net/?f=%5Cmathsf%7Bmed%7B%28A%5Cwidehat%7BB%7DC%29%7D%3Dmed%7B%28A%5Cwidehat%7BC%7DB%29%7D%3A%3Dx%5Cqquad%5Cquad%28i%29%7D)
• Pela soma dos ângulos internos do triângulo BAD:
![\mathsf{med(B\widehat{A}D)+med(A\widehat{B}D)+med(A\widehat{D}B)=180^\circ}\\\\ \mathsf{40^\circ+x+med(A\widehat{D}B)=180^\circ}\\\\ \mathsf{med(A\widehat{D}B)=180^\circ-40^\circ-x}\\\\ \mathsf{med(A\widehat{D}B)=140^\circ-x\qquad\quad(ii)} \mathsf{med(B\widehat{A}D)+med(A\widehat{B}D)+med(A\widehat{D}B)=180^\circ}\\\\ \mathsf{40^\circ+x+med(A\widehat{D}B)=180^\circ}\\\\ \mathsf{med(A\widehat{D}B)=180^\circ-40^\circ-x}\\\\ \mathsf{med(A\widehat{D}B)=140^\circ-x\qquad\quad(ii)}](https://tex.z-dn.net/?f=%5Cmathsf%7Bmed%28B%5Cwidehat%7BA%7DD%29%2Bmed%28A%5Cwidehat%7BB%7DD%29%2Bmed%28A%5Cwidehat%7BD%7DB%29%3D180%5E%5Ccirc%7D%5C%5C%5C%5C+%5Cmathsf%7B40%5E%5Ccirc%2Bx%2Bmed%28A%5Cwidehat%7BD%7DB%29%3D180%5E%5Ccirc%7D%5C%5C%5C%5C+%5Cmathsf%7Bmed%28A%5Cwidehat%7BD%7DB%29%3D180%5E%5Ccirc-40%5E%5Ccirc-x%7D%5C%5C%5C%5C+%5Cmathsf%7Bmed%28A%5Cwidehat%7BD%7DB%29%3D140%5E%5Ccirc-x%5Cqquad%5Cquad%28ii%29%7D)
• Pela soma dos ângulos internos do triângulo ABC:
![\mathsf{med(B\widehat{A}C)+med(A\widehat{B}C)+med(A\widehat{C}B)=180^\circ}\\\\ \mathsf{med(B\widehat{A}C)+x+x=180^\circ}\\\\ \mathsf{med(B\widehat{A}C)+2x=180^\circ}\\\\ \mathsf{med(B\widehat{A}C)=180^\circ-2x}\qquad\quad\textsf{mas }\mathsf{med(B\widehat{A}C)=med(B\widehat{A}D)+med(D\widehat{A}C)}\\\\ \mathsf{med(B\widehat{A}D)+med(D\widehat{A}C)=180^\circ-2x} \mathsf{med(B\widehat{A}C)+med(A\widehat{B}C)+med(A\widehat{C}B)=180^\circ}\\\\ \mathsf{med(B\widehat{A}C)+x+x=180^\circ}\\\\ \mathsf{med(B\widehat{A}C)+2x=180^\circ}\\\\ \mathsf{med(B\widehat{A}C)=180^\circ-2x}\qquad\quad\textsf{mas }\mathsf{med(B\widehat{A}C)=med(B\widehat{A}D)+med(D\widehat{A}C)}\\\\ \mathsf{med(B\widehat{A}D)+med(D\widehat{A}C)=180^\circ-2x}](https://tex.z-dn.net/?f=%5Cmathsf%7Bmed%28B%5Cwidehat%7BA%7DC%29%2Bmed%28A%5Cwidehat%7BB%7DC%29%2Bmed%28A%5Cwidehat%7BC%7DB%29%3D180%5E%5Ccirc%7D%5C%5C%5C%5C+%5Cmathsf%7Bmed%28B%5Cwidehat%7BA%7DC%29%2Bx%2Bx%3D180%5E%5Ccirc%7D%5C%5C%5C%5C+%5Cmathsf%7Bmed%28B%5Cwidehat%7BA%7DC%29%2B2x%3D180%5E%5Ccirc%7D%5C%5C%5C%5C+%5Cmathsf%7Bmed%28B%5Cwidehat%7BA%7DC%29%3D180%5E%5Ccirc-2x%7D%5Cqquad%5Cquad%5Ctextsf%7Bmas+%7D%5Cmathsf%7Bmed%28B%5Cwidehat%7BA%7DC%29%3Dmed%28B%5Cwidehat%7BA%7DD%29%2Bmed%28D%5Cwidehat%7BA%7DC%29%7D%5C%5C%5C%5C+%5Cmathsf%7Bmed%28B%5Cwidehat%7BA%7DD%29%2Bmed%28D%5Cwidehat%7BA%7DC%29%3D180%5E%5Ccirc-2x%7D)
![\mathsf{40^\circ+med(D\widehat{A}C)=180^\circ-2x}\\\\ \mathsf{med(D\widehat{A}C)=180^\circ-2x-40^\circ}\\\\ \mathsf{med(D\widehat{A}C)=140^\circ-2x\qquad\quad(iii)} \mathsf{40^\circ+med(D\widehat{A}C)=180^\circ-2x}\\\\ \mathsf{med(D\widehat{A}C)=180^\circ-2x-40^\circ}\\\\ \mathsf{med(D\widehat{A}C)=140^\circ-2x\qquad\quad(iii)}](https://tex.z-dn.net/?f=%5Cmathsf%7B40%5E%5Ccirc%2Bmed%28D%5Cwidehat%7BA%7DC%29%3D180%5E%5Ccirc-2x%7D%5C%5C%5C%5C+%5Cmathsf%7Bmed%28D%5Cwidehat%7BA%7DC%29%3D180%5E%5Ccirc-2x-40%5E%5Ccirc%7D%5C%5C%5C%5C+%5Cmathsf%7Bmed%28D%5Cwidehat%7BA%7DC%29%3D140%5E%5Ccirc-2x%5Cqquad%5Cquad%28iii%29%7D)
• O triângulo ADE é isósceles.
Logo, os ângulos da base são congruentes:
![\mathsf{med(A\widehat{E}D)=med(A\widehat{D}E):=y\qquad\quad(iv)} \mathsf{med(A\widehat{E}D)=med(A\widehat{D}E):=y\qquad\quad(iv)}](https://tex.z-dn.net/?f=%5Cmathsf%7Bmed%28A%5Cwidehat%7BE%7DD%29%3Dmed%28A%5Cwidehat%7BD%7DE%29%3A%3Dy%5Cqquad%5Cquad%28iv%29%7D)
• Pela soma dos ângulos internos do triângulo ADE:
![\mathsf{med(D\widehat{A}E)+med(A\widehat{E}D)+med(A\widehat{D}E)=180^\circ}\\\\ \mathsf{(140^\circ-2x)+y+y=180^\circ}\\\\ \mathsf{(140^\circ-2x)+2y=180^\circ}\\\\ \mathsf{2y=180^\circ-(140^\circ-2x)}\\\\ \mathsf{2y=180^\circ-140^\circ+2x} \mathsf{med(D\widehat{A}E)+med(A\widehat{E}D)+med(A\widehat{D}E)=180^\circ}\\\\ \mathsf{(140^\circ-2x)+y+y=180^\circ}\\\\ \mathsf{(140^\circ-2x)+2y=180^\circ}\\\\ \mathsf{2y=180^\circ-(140^\circ-2x)}\\\\ \mathsf{2y=180^\circ-140^\circ+2x}](https://tex.z-dn.net/?f=%5Cmathsf%7Bmed%28D%5Cwidehat%7BA%7DE%29%2Bmed%28A%5Cwidehat%7BE%7DD%29%2Bmed%28A%5Cwidehat%7BD%7DE%29%3D180%5E%5Ccirc%7D%5C%5C%5C%5C+%5Cmathsf%7B%28140%5E%5Ccirc-2x%29%2By%2By%3D180%5E%5Ccirc%7D%5C%5C%5C%5C+%5Cmathsf%7B%28140%5E%5Ccirc-2x%29%2B2y%3D180%5E%5Ccirc%7D%5C%5C%5C%5C+%5Cmathsf%7B2y%3D180%5E%5Ccirc-%28140%5E%5Ccirc-2x%29%7D%5C%5C%5C%5C+%5Cmathsf%7B2y%3D180%5E%5Ccirc-140%5E%5Ccirc%2B2x%7D)
![\mathsf{2y=40^\circ+2x}\\\\ \mathsf{y=\dfrac{40^\circ+2x}{2}}\\\\\\ \mathsf{y=\dfrac{\diagup\!\!\!\! 2\cdot (20^\circ+x)}{\diagup\!\!\!\! 2}}\\\\\\ \mathsf{y=20^\circ+x\qquad\quad(v)} \mathsf{2y=40^\circ+2x}\\\\ \mathsf{y=\dfrac{40^\circ+2x}{2}}\\\\\\ \mathsf{y=\dfrac{\diagup\!\!\!\! 2\cdot (20^\circ+x)}{\diagup\!\!\!\! 2}}\\\\\\ \mathsf{y=20^\circ+x\qquad\quad(v)}](https://tex.z-dn.net/?f=%5Cmathsf%7B2y%3D40%5E%5Ccirc%2B2x%7D%5C%5C%5C%5C+%5Cmathsf%7By%3D%5Cdfrac%7B40%5E%5Ccirc%2B2x%7D%7B2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By%3D%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%5Ccdot+%2820%5E%5Ccirc%2Bx%29%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By%3D20%5E%5Ccirc%2Bx%5Cqquad%5Cquad%28v%29%7D)
• O ângulo
é um ângulo raso, isto é, sua medida é 180°:
![\mathsf{med(B\widehat{D}C)=180^\circ}\\\\ \mathsf{med(B\widehat{D}A)+med(A\widehat{D}E)+med(E\widehat{D}C)=180^\circ}\\\\ \mathsf {(140^\circ-x)+y+med(E\widehat{D}C)=180^\circ}\\\\ \mathsf{140^\circ-\diagup\!\!\!\! x+20^\circ+\diagup\!\!\!\! x+med(E\widehat{D}C)=180^\circ} \mathsf{med(B\widehat{D}C)=180^\circ}\\\\ \mathsf{med(B\widehat{D}A)+med(A\widehat{D}E)+med(E\widehat{D}C)=180^\circ}\\\\ \mathsf {(140^\circ-x)+y+med(E\widehat{D}C)=180^\circ}\\\\ \mathsf{140^\circ-\diagup\!\!\!\! x+20^\circ+\diagup\!\!\!\! x+med(E\widehat{D}C)=180^\circ}](https://tex.z-dn.net/?f=%5Cmathsf%7Bmed%28B%5Cwidehat%7BD%7DC%29%3D180%5E%5Ccirc%7D%5C%5C%5C%5C+%5Cmathsf%7Bmed%28B%5Cwidehat%7BD%7DA%29%2Bmed%28A%5Cwidehat%7BD%7DE%29%2Bmed%28E%5Cwidehat%7BD%7DC%29%3D180%5E%5Ccirc%7D%5C%5C%5C%5C+%5Cmathsf+%7B%28140%5E%5Ccirc-x%29%2By%2Bmed%28E%5Cwidehat%7BD%7DC%29%3D180%5E%5Ccirc%7D%5C%5C%5C%5C+%5Cmathsf%7B140%5E%5Ccirc-%5Cdiagup%5C%21%5C%21%5C%21%5C%21+x%2B20%5E%5Ccirc%2B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+x%2Bmed%28E%5Cwidehat%7BD%7DC%29%3D180%5E%5Ccirc%7D)
![\mathsf{160^\circ+med(E\widehat{D}C)=180^\circ}\mathsf{med(E\widehat{D}C)=180^\circ-160^\circ}\\\\ \mathsf{med(E\widehat{D}C)=20^\circ}\\\\\\ \therefore~~\boxed{\begin{array}{c}\mathsf{med(C\widehat{D}E)=20^\circ} \end{array}}\qquad\quad\checkmark \mathsf{160^\circ+med(E\widehat{D}C)=180^\circ}\mathsf{med(E\widehat{D}C)=180^\circ-160^\circ}\\\\ \mathsf{med(E\widehat{D}C)=20^\circ}\\\\\\ \therefore~~\boxed{\begin{array}{c}\mathsf{med(C\widehat{D}E)=20^\circ} \end{array}}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cmathsf%7B160%5E%5Ccirc%2Bmed%28E%5Cwidehat%7BD%7DC%29%3D180%5E%5Ccirc%7D%5Cmathsf%7Bmed%28E%5Cwidehat%7BD%7DC%29%3D180%5E%5Ccirc-160%5E%5Ccirc%7D%5C%5C%5C%5C+%5Cmathsf%7Bmed%28E%5Cwidehat%7BD%7DC%29%3D20%5E%5Ccirc%7D%5C%5C%5C%5C%5C%5C+%5Ctherefore%7E%7E%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7Bmed%28C%5Cwidehat%7BD%7DE%29%3D20%5E%5Ccirc%7D+%5Cend%7Barray%7D%7D%5Cqquad%5Cquad%5Ccheckmark)
Bons estudos! :-)
Tags: medida ângulo interno triângulo isósceles geometria elementar plana
_______________
Para melhor compreensão, veja figura em anexo a esta resposta.
De acordo com as informações do enunciado, temos que
•
• O triângulo ABC é isósceles.
Logo, os ângulos da base são congruentes:
• Pela soma dos ângulos internos do triângulo BAD:
• Pela soma dos ângulos internos do triângulo ABC:
• O triângulo ADE é isósceles.
Logo, os ângulos da base são congruentes:
• Pela soma dos ângulos internos do triângulo ADE:
• O ângulo
Bons estudos! :-)
Tags: medida ângulo interno triângulo isósceles geometria elementar plana
Anexos:
![](https://pt-static.z-dn.net/files/dd3/d5ad85a5ff30635bf56c69f08a133337.png)
Perguntas interessantes