Matemática, perguntado por davideandrade, 1 ano atrás

log(2) {2+3.log(3) [1+4.log(4) (5x+1) ] } = 3

Soluções para a tarefa

Respondido por lamacch
2
\log_{2} \{2+3.\log_{3} [1+4.\log_{4} (5x+1) ] \} = 3

2+3.\log_{3} [1+4.\log_{4} (5x+1) ] =  2^{3}

2+3.\log_{3} [1+4.\log_{4} (5x+1) ] =  8

3.\log_{3} [1+4.\log_{4} (5x+1) ] =  8-2

3.\log_{3} [1+4.\log_{4} (5x+1) ] =  6

\log_{3} [1+4.\log_{4} (5x+1) ] =   \dfrac{6}{3}

\log_{3} [1+4.\log_{4} (5x+1) ] =  2

1+4.\log_{4} (5x+1) = 3^{2}

1+4.\log_{4} (5x+1) = 9

4.\log_{4} (5x+1) = 9-1

4.\log_{4} (5x+1) = 8

\log_{4} (5x+1) =  \dfrac{8}{4}

\log_{4} (5x+1) =  2

5x+1= 4^{2}

5x+1= 16

5x= 16-1

5x= 15

x =\dfrac{15}{5}

x =3

S=\{3\}
Perguntas interessantes