Unesp: Quais são os valores de a, tais que a reta y=ax + B, passando por (2,2), não intercepta a circunferência x^2+ y^2= 1?
pedronoliveira:
ja obtive a resposta.
Soluções para a tarefa
Respondido por
5
Caso tenha problemas para visualizar a resposta pelo aplicativo, experimente abrir pelo navegador: https://brainly.com.br/tarefa/8085846
_______________
É dada a equação de uma reta
![\mathsf{r:~y=ax+b} \mathsf{r:~y=ax+b}](https://tex.z-dn.net/?f=%5Cmathsf%7Br%3A%7Ey%3Dax%2Bb%7D)
e sabemos que o ponto
pertence a esta reta. Logo, as coordenadas deste ponto devem satisfazer à equação de ![\mathsf{r}. \mathsf{r}.](https://tex.z-dn.net/?f=%5Cmathsf%7Br%7D.)
Observe também que conhecemos um ponto
da reta e o seu coeficiente angular
é desconhecido. Sendo assim, podemos expressar a equação de
na forma ponto-inclinação:
![\mathsf{r:~y-y_P=a\cdot (x-x_P)}\\\\ \mathsf{r:~y-2=a\cdot (x-2)}\\\\ \mathsf{r:~y-2=ax-2a}\\\\ \mathsf{r:~y=ax-2a+2\qquad\quad(ii)} \mathsf{r:~y-y_P=a\cdot (x-x_P)}\\\\ \mathsf{r:~y-2=a\cdot (x-2)}\\\\ \mathsf{r:~y-2=ax-2a}\\\\ \mathsf{r:~y=ax-2a+2\qquad\quad(ii)}](https://tex.z-dn.net/?f=%5Cmathsf%7Br%3A%7Ey-y_P%3Da%5Ccdot+%28x-x_P%29%7D%5C%5C%5C%5C+%5Cmathsf%7Br%3A%7Ey-2%3Da%5Ccdot+%28x-2%29%7D%5C%5C%5C%5C+%5Cmathsf%7Br%3A%7Ey-2%3Dax-2a%7D%5C%5C%5C%5C+%5Cmathsf%7Br%3A%7Ey%3Dax-2a%2B2%5Cqquad%5Cquad%28ii%29%7D)
De acordo com o que é pedido no enunciado, devemos encontrar os valores para
de modo que o sistema formado pelas equações da reta e da circunferência não possua soluções para
e ![\mathsf{y}: \mathsf{y}:](https://tex.z-dn.net/?f=%5Cmathsf%7By%7D%3A)
![\left\{\! \begin{array}{lc} \mathsf{y=ax-2a+2}&\quad\mathsf{(i)}\\ \mathsf{x^2+y^2=1}&\quad\mathsf{(ii)} \end{array} \right. \left\{\! \begin{array}{lc} \mathsf{y=ax-2a+2}&\quad\mathsf{(i)}\\ \mathsf{x^2+y^2=1}&\quad\mathsf{(ii)} \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5C%21+%5Cbegin%7Barray%7D%7Blc%7D+%5Cmathsf%7By%3Dax-2a%2B2%7D%26amp%3B%5Cquad%5Cmathsf%7B%28i%29%7D%5C%5C+%5Cmathsf%7Bx%5E2%2By%5E2%3D1%7D%26amp%3B%5Cquad%5Cmathsf%7B%28ii%29%7D+%5Cend%7Barray%7D+%5Cright.)
Substituindo o
da equação
na equação
obtemos
![\mathsf{x^2+(ax-2a+2)^2=1}\\\\ \mathsf{x^2+(ax-2a+2)\cdot (ax-2a+2)=1} \mathsf{x^2+(ax-2a+2)^2=1}\\\\ \mathsf{x^2+(ax-2a+2)\cdot (ax-2a+2)=1}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%5E2%2B%28ax-2a%2B2%29%5E2%3D1%7D%5C%5C%5C%5C+%5Cmathsf%7Bx%5E2%2B%28ax-2a%2B2%29%5Ccdot+%28ax-2a%2B2%29%3D1%7D)
Aplicando a distributiva para eliminar os parênteses, obtemos
![\mathsf{x^2+a^2x^2-2a^2x+2ax-2a^2x+4a^2-4a+2ax-4a+4=1}\\\\ \mathsf{x^2+a^2x^2-2a^2x-2a^2x+2ax+2ax+4a^2-4a-4a+4=1}\\\\ \mathsf{x^2+a^2x^2-4a^2x+4ax+4a^2-8a+4=1}\\\\ \mathsf{(1+a^2)x^2+(-4a^2+4a)x+4a^2-8a+4-1=0}\\\\ \mathsf{(1+a^2)x^2+(-4a^2+4a)x+4a^2-8a+3=0\qquad\quad(iii)} \mathsf{x^2+a^2x^2-2a^2x+2ax-2a^2x+4a^2-4a+2ax-4a+4=1}\\\\ \mathsf{x^2+a^2x^2-2a^2x-2a^2x+2ax+2ax+4a^2-4a-4a+4=1}\\\\ \mathsf{x^2+a^2x^2-4a^2x+4ax+4a^2-8a+4=1}\\\\ \mathsf{(1+a^2)x^2+(-4a^2+4a)x+4a^2-8a+4-1=0}\\\\ \mathsf{(1+a^2)x^2+(-4a^2+4a)x+4a^2-8a+3=0\qquad\quad(iii)}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%5E2%2Ba%5E2x%5E2-2a%5E2x%2B2ax-2a%5E2x%2B4a%5E2-4a%2B2ax-4a%2B4%3D1%7D%5C%5C%5C%5C+%5Cmathsf%7Bx%5E2%2Ba%5E2x%5E2-2a%5E2x-2a%5E2x%2B2ax%2B2ax%2B4a%5E2-4a-4a%2B4%3D1%7D%5C%5C%5C%5C+%5Cmathsf%7Bx%5E2%2Ba%5E2x%5E2-4a%5E2x%2B4ax%2B4a%5E2-8a%2B4%3D1%7D%5C%5C%5C%5C+%5Cmathsf%7B%281%2Ba%5E2%29x%5E2%2B%28-4a%5E2%2B4a%29x%2B4a%5E2-8a%2B4-1%3D0%7D%5C%5C%5C%5C+%5Cmathsf%7B%281%2Ba%5E2%29x%5E2%2B%28-4a%5E2%2B4a%29x%2B4a%5E2-8a%2B3%3D0%5Cqquad%5Cquad%28iii%29%7D)
Temos acima uma equação quadrática na variáve
Como queremos que ela não tenha solução, devemos condicionar o discriminante
desta equação como sendo negativo:
![\rightarrow\quad\left\{\! \begin{array}{l} \mathsf{A=1+a^2}\\\mathsf{B=-4a^2+4a}\\\mathsf{C=4a^2-8a+3} \end{array} \right.\\\\\\\\ \mathsf{\Delta<0}\\\\ \mathsf{B^2-4AC<0}\\\\ \mathsf{(-4a^2+4a)^2-4\cdot (1+a^2)\cdot (4a^2-8a+3)<0} \rightarrow\quad\left\{\! \begin{array}{l} \mathsf{A=1+a^2}\\\mathsf{B=-4a^2+4a}\\\mathsf{C=4a^2-8a+3} \end{array} \right.\\\\\\\\ \mathsf{\Delta<0}\\\\ \mathsf{B^2-4AC<0}\\\\ \mathsf{(-4a^2+4a)^2-4\cdot (1+a^2)\cdot (4a^2-8a+3)<0}](https://tex.z-dn.net/?f=%5Crightarrow%5Cquad%5Cleft%5C%7B%5C%21+%5Cbegin%7Barray%7D%7Bl%7D+%5Cmathsf%7BA%3D1%2Ba%5E2%7D%5C%5C%5Cmathsf%7BB%3D-4a%5E2%2B4a%7D%5C%5C%5Cmathsf%7BC%3D4a%5E2-8a%2B3%7D+%5Cend%7Barray%7D+%5Cright.%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7BB%5E2-4AC%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B%28-4a%5E2%2B4a%29%5E2-4%5Ccdot+%281%2Ba%5E2%29%5Ccdot+%284a%5E2-8a%2B3%29%26lt%3B0%7D)
![\mathsf{\big[\!\!-4a\cdot (a-1)\big]^2-4\cdot (1+a^2)\cdot (4a^2-8a+3)<0}\\\\ \mathsf{16a^2(a-1)^2-4\cdot (4a^2-8a+3+4a^4-8a^3+3a^2)<0}\\\\ \mathsf{16a^2(a-1)^2-4\cdot (4a^4-8a^3+4a^2+3a^2-8a+3)<0}\\\\ \mathsf{16a^2(a-1)^2-4\cdot (4a^4-8a^3+7a^2-8a+3)<0}\\\\ \mathsf{16a^2(a^2-2a+1)-4\cdot (4a^4-8a^3+7a^2-8a+3)<0} \mathsf{\big[\!\!-4a\cdot (a-1)\big]^2-4\cdot (1+a^2)\cdot (4a^2-8a+3)<0}\\\\ \mathsf{16a^2(a-1)^2-4\cdot (4a^2-8a+3+4a^4-8a^3+3a^2)<0}\\\\ \mathsf{16a^2(a-1)^2-4\cdot (4a^4-8a^3+4a^2+3a^2-8a+3)<0}\\\\ \mathsf{16a^2(a-1)^2-4\cdot (4a^4-8a^3+7a^2-8a+3)<0}\\\\ \mathsf{16a^2(a^2-2a+1)-4\cdot (4a^4-8a^3+7a^2-8a+3)<0}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cbig%5B%5C%21%5C%21-4a%5Ccdot+%28a-1%29%5Cbig%5D%5E2-4%5Ccdot+%281%2Ba%5E2%29%5Ccdot+%284a%5E2-8a%2B3%29%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B16a%5E2%28a-1%29%5E2-4%5Ccdot+%284a%5E2-8a%2B3%2B4a%5E4-8a%5E3%2B3a%5E2%29%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B16a%5E2%28a-1%29%5E2-4%5Ccdot+%284a%5E4-8a%5E3%2B4a%5E2%2B3a%5E2-8a%2B3%29%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B16a%5E2%28a-1%29%5E2-4%5Ccdot+%284a%5E4-8a%5E3%2B7a%5E2-8a%2B3%29%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B16a%5E2%28a%5E2-2a%2B1%29-4%5Ccdot+%284a%5E4-8a%5E3%2B7a%5E2-8a%2B3%29%26lt%3B0%7D)
![\mathsf{16a^2(a^2-2a+1)-4\cdot (4a^4-8a^3+7a^2-8a+3)<0}\\\\ \mathsf{16a^4-32a^3+16a^2-16a^4+32a^3-28a^2+32a-12<0}\\\\ \mathsf{\diagup\!\!\!\!\! 16a^4-\diagup\!\!\!\!\! 16a^4-\,\diagdown\!\!\!\!\!\! 32a^3+\,\diagdown\!\!\!\!\!\!\!32a^3-12a^2+32a-12<0}\\\\ \mathsf{-12a^2+32a-12<0}\\\\ \mathsf{-4\cdot (3a^2-8a+3)<0} \mathsf{16a^2(a^2-2a+1)-4\cdot (4a^4-8a^3+7a^2-8a+3)<0}\\\\ \mathsf{16a^4-32a^3+16a^2-16a^4+32a^3-28a^2+32a-12<0}\\\\ \mathsf{\diagup\!\!\!\!\! 16a^4-\diagup\!\!\!\!\! 16a^4-\,\diagdown\!\!\!\!\!\! 32a^3+\,\diagdown\!\!\!\!\!\!\!32a^3-12a^2+32a-12<0}\\\\ \mathsf{-12a^2+32a-12<0}\\\\ \mathsf{-4\cdot (3a^2-8a+3)<0}](https://tex.z-dn.net/?f=%5Cmathsf%7B16a%5E2%28a%5E2-2a%2B1%29-4%5Ccdot+%284a%5E4-8a%5E3%2B7a%5E2-8a%2B3%29%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B16a%5E4-32a%5E3%2B16a%5E2-16a%5E4%2B32a%5E3-28a%5E2%2B32a-12%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21+16a%5E4-%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21+16a%5E4-%5C%2C%5Cdiagdown%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21+32a%5E3%2B%5C%2C%5Cdiagdown%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%2132a%5E3-12a%5E2%2B32a-12%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B-12a%5E2%2B32a-12%26lt%3B0%7D%5C%5C%5C%5C+%5Cmathsf%7B-4%5Ccdot+%283a%5E2-8a%2B3%29%26lt%3B0%7D)
![\mathsf{3a^2-8a+3>0\quad\longleftarrow\quad\textsf{(inequa\c{c}\~ao do }\mathsf{2^o}\textsf{ grau)}\quad(iv)} \mathsf{3a^2-8a+3>0\quad\longleftarrow\quad\textsf{(inequa\c{c}\~ao do }\mathsf{2^o}\textsf{ grau)}\quad(iv)}](https://tex.z-dn.net/?f=%5Cmathsf%7B3a%5E2-8a%2B3%26gt%3B0%5Cquad%5Clongleftarrow%5Cquad%5Ctextsf%7B%28inequa%5Cc%7Bc%7D%5C%7Eao+do+%7D%5Cmathsf%7B2%5Eo%7D%5Ctextsf%7B+grau%29%7D%5Cquad%28iv%29%7D)
Encontrando as raízes do lado esquerdo da inequação acima:
![\mathsf{3a^2-8a+3=0}\quad\rightarrow\quad\left\{\! \begin{array}{l} \mathsf{A=3}\\\mathsf{B=-8}\\\mathsf{C=3} \end{array} \right.\\\\\\ \mathsf{\Delta=B^2-4AC}\\\\ \mathsf{\Delta=(-8)^2-4\cdot 3\cdot 3}\\\\ \mathsf{\Delta=64-36}\\\\ \mathsf{\Delta=28}\\\\ \mathsf{\Delta=2^2\cdot 7} \mathsf{3a^2-8a+3=0}\quad\rightarrow\quad\left\{\! \begin{array}{l} \mathsf{A=3}\\\mathsf{B=-8}\\\mathsf{C=3} \end{array} \right.\\\\\\ \mathsf{\Delta=B^2-4AC}\\\\ \mathsf{\Delta=(-8)^2-4\cdot 3\cdot 3}\\\\ \mathsf{\Delta=64-36}\\\\ \mathsf{\Delta=28}\\\\ \mathsf{\Delta=2^2\cdot 7}](https://tex.z-dn.net/?f=%5Cmathsf%7B3a%5E2-8a%2B3%3D0%7D%5Cquad%5Crightarrow%5Cquad%5Cleft%5C%7B%5C%21+%5Cbegin%7Barray%7D%7Bl%7D+%5Cmathsf%7BA%3D3%7D%5C%5C%5Cmathsf%7BB%3D-8%7D%5C%5C%5Cmathsf%7BC%3D3%7D+%5Cend%7Barray%7D+%5Cright.%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%3DB%5E2-4AC%7D%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%3D%28-8%29%5E2-4%5Ccdot+3%5Ccdot+3%7D%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%3D64-36%7D%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%3D28%7D%5C%5C%5C%5C+%5Cmathsf%7B%5CDelta%3D2%5E2%5Ccdot+7%7D)
![\mathsf{a=\dfrac{-B\pm \sqrt{\Delta}}{2A}}\\\\\\ \mathsf{a=\dfrac{-(-8)\pm \sqrt{2^2\cdot 7}}{2\cdot 3}}\\\\\\ \mathsf{a=\dfrac{8\pm 2\sqrt{7}}{2\cdot 3}}\\\\\\ \mathsf{a=\dfrac{\diagup\!\!\!\! 2\cdot (4\pm \sqrt{7})}{\diagup\!\!\!\! 2\cdot 3}} \mathsf{a=\dfrac{-B\pm \sqrt{\Delta}}{2A}}\\\\\\ \mathsf{a=\dfrac{-(-8)\pm \sqrt{2^2\cdot 7}}{2\cdot 3}}\\\\\\ \mathsf{a=\dfrac{8\pm 2\sqrt{7}}{2\cdot 3}}\\\\\\ \mathsf{a=\dfrac{\diagup\!\!\!\! 2\cdot (4\pm \sqrt{7})}{\diagup\!\!\!\! 2\cdot 3}}](https://tex.z-dn.net/?f=%5Cmathsf%7Ba%3D%5Cdfrac%7B-B%5Cpm+%5Csqrt%7B%5CDelta%7D%7D%7B2A%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Ba%3D%5Cdfrac%7B-%28-8%29%5Cpm+%5Csqrt%7B2%5E2%5Ccdot+7%7D%7D%7B2%5Ccdot+3%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Ba%3D%5Cdfrac%7B8%5Cpm+2%5Csqrt%7B7%7D%7D%7B2%5Ccdot+3%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Ba%3D%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%5Ccdot+%284%5Cpm+%5Csqrt%7B7%7D%29%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%5Ccdot+3%7D%7D)
![\mathsf{a=\dfrac{4\pm \sqrt{7}}{3}}\\\\\\ \begin{array}{rcl} \mathsf{a=\dfrac{4-\sqrt{7}}{3}}&~\textsf{ ou }~&\mathsf{a=\dfrac{4+\sqrt{7}}{3}} \end{array} \mathsf{a=\dfrac{4\pm \sqrt{7}}{3}}\\\\\\ \begin{array}{rcl} \mathsf{a=\dfrac{4-\sqrt{7}}{3}}&~\textsf{ ou }~&\mathsf{a=\dfrac{4+\sqrt{7}}{3}} \end{array}](https://tex.z-dn.net/?f=%5Cmathsf%7Ba%3D%5Cdfrac%7B4%5Cpm+%5Csqrt%7B7%7D%7D%7B3%7D%7D%5C%5C%5C%5C%5C%5C+%5Cbegin%7Barray%7D%7Brcl%7D+%5Cmathsf%7Ba%3D%5Cdfrac%7B4-%5Csqrt%7B7%7D%7D%7B3%7D%7D%26amp%3B%7E%5Ctextsf%7B+ou+%7D%7E%26amp%3B%5Cmathsf%7Ba%3D%5Cdfrac%7B4%2B%5Csqrt%7B7%7D%7D%7B3%7D%7D+%5Cend%7Barray%7D)
As raízes do lado esquerdo da inequação
são
![\begin{array}{rcl} \mathsf{a_1=\dfrac{4-\sqrt{7}}{3}}&~\textsf{ e }~&\mathsf{a_2=\dfrac{4+\sqrt{7}}{3}} \end{array} \begin{array}{rcl} \mathsf{a_1=\dfrac{4-\sqrt{7}}{3}}&~\textsf{ e }~&\mathsf{a_2=\dfrac{4+\sqrt{7}}{3}} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D+%5Cmathsf%7Ba_1%3D%5Cdfrac%7B4-%5Csqrt%7B7%7D%7D%7B3%7D%7D%26amp%3B%7E%5Ctextsf%7B+e+%7D%7E%26amp%3B%5Cmathsf%7Ba_2%3D%5Cdfrac%7B4%2B%5Csqrt%7B7%7D%7D%7B3%7D%7D+%5Cend%7Barray%7D)
Fazendo o quadro de sinais para o lado esquerdo de![\mathsf{(iv)}: \mathsf{(iv)}:](https://tex.z-dn.net/?f=%5Cmathsf%7B%28iv%29%7D%3A)
![\begin{array}{cc} \mathsf{3a^2-8a+3}\quad&\quad\underline{~~+++}\underset{\mathsf{a_1}}{\bullet}\underline{----}\underset{\mathsf{a_2}}{\bullet}\underline{+++~~}_{\blacktriangleright}\qquad{\mathbb{R}} \end{array} \begin{array}{cc} \mathsf{3a^2-8a+3}\quad&\quad\underline{~~+++}\underset{\mathsf{a_1}}{\bullet}\underline{----}\underset{\mathsf{a_2}}{\bullet}\underline{+++~~}_{\blacktriangleright}\qquad{\mathbb{R}} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bcc%7D+%5Cmathsf%7B3a%5E2-8a%2B3%7D%5Cquad%26amp%3B%5Cquad%5Cunderline%7B%7E%7E%2B%2B%2B%7D%5Cunderset%7B%5Cmathsf%7Ba_1%7D%7D%7B%5Cbullet%7D%5Cunderline%7B----%7D%5Cunderset%7B%5Cmathsf%7Ba_2%7D%7D%7B%5Cbullet%7D%5Cunderline%7B%2B%2B%2B%7E%7E%7D_%7B%5Cblacktriangleright%7D%5Cqquad%7B%5Cmathbb%7BR%7D%7D+%5Cend%7Barray%7D)
Como queremos que o lado esquerdo de
seja positivo, devemos ter
![\\\mathsf{a<a_1~~~ou~~~a>a_2}\\\\\\ \boxed{\begin{array}{c}\mathsf{a<\dfrac{4-\sqrt{7}}{3}~~~ou~~~a>\dfrac{4+\sqrt{7}}{3}} \end{array}}\quad\longleftarrow\quad\textsf{este \'e o intervalo procurado.} \\\mathsf{a<a_1~~~ou~~~a>a_2}\\\\\\ \boxed{\begin{array}{c}\mathsf{a<\dfrac{4-\sqrt{7}}{3}~~~ou~~~a>\dfrac{4+\sqrt{7}}{3}} \end{array}}\quad\longleftarrow\quad\textsf{este \'e o intervalo procurado.}](https://tex.z-dn.net/?f=%5C%5C%5Cmathsf%7Ba%26lt%3Ba_1%7E%7E%7Eou%7E%7E%7Ea%26gt%3Ba_2%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7Ba%26lt%3B%5Cdfrac%7B4-%5Csqrt%7B7%7D%7D%7B3%7D%7E%7E%7Eou%7E%7E%7Ea%26gt%3B%5Cdfrac%7B4%2B%5Csqrt%7B7%7D%7D%7B3%7D%7D+%5Cend%7Barray%7D%7D%5Cquad%5Clongleftarrow%5Cquad%5Ctextsf%7Beste+%5C%27e+o+intervalo+procurado.%7D)
Bons estudos! :-)
Tags: reta externa à circunferência tangente ponto coeficiente angular parâmetro sistema solução resolver geometria analítica
_______________
É dada a equação de uma reta
e sabemos que o ponto
Observe também que conhecemos um ponto
De acordo com o que é pedido no enunciado, devemos encontrar os valores para
Substituindo o
Aplicando a distributiva para eliminar os parênteses, obtemos
Temos acima uma equação quadrática na variáve
Encontrando as raízes do lado esquerdo da inequação acima:
As raízes do lado esquerdo da inequação
Fazendo o quadro de sinais para o lado esquerdo de
Como queremos que o lado esquerdo de
Bons estudos! :-)
Tags: reta externa à circunferência tangente ponto coeficiente angular parâmetro sistema solução resolver geometria analítica
Perguntas interessantes
Ed. Física,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
1 ano atrás
Saúde,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás