Uma progressão geométrica tem quatro termos. O segundo termo é igual a −14 e a soma dos três primeiros termos é igual a 86. Sabendo que o quarto termo é um número entre −1 e 1, o produto de todos os termos da progressão é igual a
Soluções para a tarefa
Respondido por
4
Olá Leonardocaetanovm4ux,
Conferindo
os valores
respectivamente, temos, segundo o enunciado:
1)
![a_2=-14\\bx=-14 a_2=-14\\bx=-14](https://tex.z-dn.net/?f=a_2%3D-14%5C%5Cbx%3D-14)
2)
![a_1+a_2+a_3=86\\x+bx+b^2x=86\\x-14+b*(bx)=86\\x+b*(-14)=100\\x-14b=100 a_1+a_2+a_3=86\\x+bx+b^2x=86\\x-14+b*(bx)=86\\x+b*(-14)=100\\x-14b=100](https://tex.z-dn.net/?f=a_1%2Ba_2%2Ba_3%3D86%5C%5Cx%2Bbx%2Bb%5E2x%3D86%5C%5Cx-14%2Bb%2A%28bx%29%3D86%5C%5Cx%2Bb%2A%28-14%29%3D100%5C%5Cx-14b%3D100)
Colocando 1) e 2) em um sistema, temos:
![\left \{ {{bx=-14} \atop {x-14b=100}} \right. \\\\ \left \{ {{bx=-14} \atop {x=100+14b}} \left \{ {{bx=-14} \atop {x-14b=100}} \right. \\\\ \left \{ {{bx=-14} \atop {x=100+14b}}](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7Bbx%3D-14%7D+%5Catop+%7Bx-14b%3D100%7D%7D+%5Cright.+%5C%5C%5C%5C++%5Cleft+%5C%7B+%7B%7Bbx%3D-14%7D+%5Catop+%7Bx%3D100%2B14b%7D%7D)
Substituindo a equação 2 em 1, temos:
![b*(14b+100)=-14\\\\14b^2+100b+14=0\\\\b^2+\frac{100}{14}b+1=0\\\\b^2+\frac{50}{7}b+1=0\\\\(a=1;B=\frac{50}{7};c=1)\\\\\Delta=B^2-4ac\\\Delta=(\frac{50}{7})^2-4*1*1\\\Delta=\frac{2500}{49}-4\\\Delta=\frac{2304}{49}\\\\b=\frac{-B\pm\sqrt{\Delta}}{2a}\\\\b=\frac{-\frac{50}{7}\pm\sqrt{\frac{2304}{49}}}{2*1}\\\\x=\frac{-\frac{50}{7}\pm\frac{48}{7}}{2}\\\\b=\frac{-50\pm 48}{14}\implies \mathsf{ \left \{ {{b_1=-\frac{1}{7}} \atop {b_2=-7}}} \right. b*(14b+100)=-14\\\\14b^2+100b+14=0\\\\b^2+\frac{100}{14}b+1=0\\\\b^2+\frac{50}{7}b+1=0\\\\(a=1;B=\frac{50}{7};c=1)\\\\\Delta=B^2-4ac\\\Delta=(\frac{50}{7})^2-4*1*1\\\Delta=\frac{2500}{49}-4\\\Delta=\frac{2304}{49}\\\\b=\frac{-B\pm\sqrt{\Delta}}{2a}\\\\b=\frac{-\frac{50}{7}\pm\sqrt{\frac{2304}{49}}}{2*1}\\\\x=\frac{-\frac{50}{7}\pm\frac{48}{7}}{2}\\\\b=\frac{-50\pm 48}{14}\implies \mathsf{ \left \{ {{b_1=-\frac{1}{7}} \atop {b_2=-7}}} \right.](https://tex.z-dn.net/?f=b%2A%2814b%2B100%29%3D-14%5C%5C%5C%5C14b%5E2%2B100b%2B14%3D0%5C%5C%5C%5Cb%5E2%2B%5Cfrac%7B100%7D%7B14%7Db%2B1%3D0%5C%5C%5C%5Cb%5E2%2B%5Cfrac%7B50%7D%7B7%7Db%2B1%3D0%5C%5C%5C%5C%28a%3D1%3BB%3D%5Cfrac%7B50%7D%7B7%7D%3Bc%3D1%29%5C%5C%5C%5C%5CDelta%3DB%5E2-4ac%5C%5C%5CDelta%3D%28%5Cfrac%7B50%7D%7B7%7D%29%5E2-4%2A1%2A1%5C%5C%5CDelta%3D%5Cfrac%7B2500%7D%7B49%7D-4%5C%5C%5CDelta%3D%5Cfrac%7B2304%7D%7B49%7D%5C%5C%5C%5Cb%3D%5Cfrac%7B-B%5Cpm%5Csqrt%7B%5CDelta%7D%7D%7B2a%7D%5C%5C%5C%5Cb%3D%5Cfrac%7B-%5Cfrac%7B50%7D%7B7%7D%5Cpm%5Csqrt%7B%5Cfrac%7B2304%7D%7B49%7D%7D%7D%7B2%2A1%7D%5C%5C%5C%5Cx%3D%5Cfrac%7B-%5Cfrac%7B50%7D%7B7%7D%5Cpm%5Cfrac%7B48%7D%7B7%7D%7D%7B2%7D%5C%5C%5C%5Cb%3D%5Cfrac%7B-50%5Cpm+48%7D%7B14%7D%5Cimplies+%5Cmathsf%7B+%5Cleft+%5C%7B+%7B%7Bb_1%3D-%5Cfrac%7B1%7D%7B7%7D%7D+%5Catop+%7Bb_2%3D-7%7D%7D%7D+%5Cright.+)
![bx=-14\\\\b_1x_1=-14\\-\frac{1}{7}x_1=-14\\x_1=-14*7\\x_1=98\\\\b_2x_2=-14\\-7x_2=-14\\x_2=2 bx=-14\\\\b_1x_1=-14\\-\frac{1}{7}x_1=-14\\x_1=-14*7\\x_1=98\\\\b_2x_2=-14\\-7x_2=-14\\x_2=2](https://tex.z-dn.net/?f=bx%3D-14%5C%5C%5C%5Cb_1x_1%3D-14%5C%5C-%5Cfrac%7B1%7D%7B7%7Dx_1%3D-14%5C%5Cx_1%3D-14%2A7%5C%5Cx_1%3D98%5C%5C%5C%5Cb_2x_2%3D-14%5C%5C-7x_2%3D-14%5C%5Cx_2%3D2)
Agora temos que conferir quais pares ordenados
ou
satisfazem a última condição:
3)
![-1 \leq a_4\leq 1\\-1\leq b^3x\leq1\\\\-1\leq b_1^3x_1\leq 1\\-1\leq (-\frac{1}{7})^3*(98)\leq 1 \\-1\leq -\frac{1}{343}*98\leq 1\\ -1\leq -\frac{2}{7} \leq 1 \\ "Verdade"\\\\-1\leq b_2^3x_2\leq 1\\-1\leq (-7)^3*2\leq 1\\-1\leq -343 * 2 \leq 1\\ -1 \leq -686 \leq 1 \\"Falso" -1 \leq a_4\leq 1\\-1\leq b^3x\leq1\\\\-1\leq b_1^3x_1\leq 1\\-1\leq (-\frac{1}{7})^3*(98)\leq 1 \\-1\leq -\frac{1}{343}*98\leq 1\\ -1\leq -\frac{2}{7} \leq 1 \\ "Verdade"\\\\-1\leq b_2^3x_2\leq 1\\-1\leq (-7)^3*2\leq 1\\-1\leq -343 * 2 \leq 1\\ -1 \leq -686 \leq 1 \\"Falso"](https://tex.z-dn.net/?f=-1+%5Cleq+a_4%5Cleq+1%5C%5C-1%5Cleq+b%5E3x%5Cleq1%5C%5C%5C%5C-1%5Cleq+b_1%5E3x_1%5Cleq+1%5C%5C-1%5Cleq+%28-%5Cfrac%7B1%7D%7B7%7D%29%5E3%2A%2898%29%5Cleq+1+%5C%5C-1%5Cleq+-%5Cfrac%7B1%7D%7B343%7D%2A98%5Cleq+1%5C%5C+-1%5Cleq+-%5Cfrac%7B2%7D%7B7%7D+%5Cleq+1+%5C%5C+%22Verdade%22%5C%5C%5C%5C-1%5Cleq+b_2%5E3x_2%5Cleq+1%5C%5C-1%5Cleq+%28-7%29%5E3%2A2%5Cleq+1%5C%5C-1%5Cleq+-343+%2A+2+%5Cleq+1%5C%5C+-1+%5Cleq+-686+%5Cleq+1+%5C%5C%22Falso%22)
Descobrimos que o par ordenado
satisfazem as 3 condições impostas.
Usando essas informações, conseguiremos responder à questão final.
![R=a_1*a_2*a_3*a_4\\\\R=x*bx*b^2x*b^3x\\\\R=b^6x^4\\\\R=(-\frac{1}{7})^6*98^4\\\\R=[(-7)^{-1}]^6*[2*7^2]^4\\\\R=(-7)^{-6}*2^4*(7^2)^4\\\\R=(-1*7)^{-6}*2^4*7^8\\\\R=(-1)^{-6}*7^{-6}*2^4*7^8\\\\R=(-1)^{-6}*2^4*7^{-6+8}\\\\R=(-1)^{-6}*2^4*7^2\\\\R=\frac{1}{(-1)^6}*16*49\\\\\boxed{R=784} R=a_1*a_2*a_3*a_4\\\\R=x*bx*b^2x*b^3x\\\\R=b^6x^4\\\\R=(-\frac{1}{7})^6*98^4\\\\R=[(-7)^{-1}]^6*[2*7^2]^4\\\\R=(-7)^{-6}*2^4*(7^2)^4\\\\R=(-1*7)^{-6}*2^4*7^8\\\\R=(-1)^{-6}*7^{-6}*2^4*7^8\\\\R=(-1)^{-6}*2^4*7^{-6+8}\\\\R=(-1)^{-6}*2^4*7^2\\\\R=\frac{1}{(-1)^6}*16*49\\\\\boxed{R=784}](https://tex.z-dn.net/?f=R%3Da_1%2Aa_2%2Aa_3%2Aa_4%5C%5C%5C%5CR%3Dx%2Abx%2Ab%5E2x%2Ab%5E3x%5C%5C%5C%5CR%3Db%5E6x%5E4%5C%5C%5C%5CR%3D%28-%5Cfrac%7B1%7D%7B7%7D%29%5E6%2A98%5E4%5C%5C%5C%5CR%3D%5B%28-7%29%5E%7B-1%7D%5D%5E6%2A%5B2%2A7%5E2%5D%5E4%5C%5C%5C%5CR%3D%28-7%29%5E%7B-6%7D%2A2%5E4%2A%287%5E2%29%5E4%5C%5C%5C%5CR%3D%28-1%2A7%29%5E%7B-6%7D%2A2%5E4%2A7%5E8%5C%5C%5C%5CR%3D%28-1%29%5E%7B-6%7D%2A7%5E%7B-6%7D%2A2%5E4%2A7%5E8%5C%5C%5C%5CR%3D%28-1%29%5E%7B-6%7D%2A2%5E4%2A7%5E%7B-6%2B8%7D%5C%5C%5C%5CR%3D%28-1%29%5E%7B-6%7D%2A2%5E4%2A7%5E2%5C%5C%5C%5CR%3D%5Cfrac%7B1%7D%7B%28-1%29%5E6%7D%2A16%2A49%5C%5C%5C%5C%5Cboxed%7BR%3D784%7D)
Dúvidas? Comente!
Conferindo
1)
2)
Colocando 1) e 2) em um sistema, temos:
Substituindo a equação 2 em 1, temos:
Agora temos que conferir quais pares ordenados
3)
Descobrimos que o par ordenado
Usando essas informações, conseguiremos responder à questão final.
Dúvidas? Comente!
Perguntas interessantes
Saúde,
11 meses atrás
História,
11 meses atrás
Matemática,
11 meses atrás
Química,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás