Uma mãe deseja que seus filhos tenham uma alimentação equilibrada e, por isso, consultou uma nutricionista, que lhe recomendou que eles consumam por dia, no mínimo, 10 mg de vitamina A, 70 mg de vitamina C e 250 de vitamina D.
Mas essa mãe também está preocupada com os custos. Ela deseja oferecer aos filhos a dieta equilibrada, porém ao menor custo possível. Para ajudar nos cálculos, ela fez uma pesquisa sobre informações nutricionais para diferentes tipos de alimento, conforme apresentado a seguir.
Tabela de informações nutricionais em mg
Vitamina
Leite (L)
Carne (kg)
Peixe (kg)
Salada (100 g)
A
2
2
10
20
C
50
20
10
30
D
80
70
10
80
A mãe também foi ao supermercado e verificou que um litro de leite custa $ 2,00, um quilo de carne custa $ 20,00, um quilo de peixe custa $ 25,00, e que para preparar 100 g de salada ela gastaria $ 3,00. O modelo matemático para o planejamento da alimentação das crianças, buscando minimizar o custo, é dado por:
Min Z = 2x1 + 20x2 + 25x3 + 3x4
s. a.:
2x1 + 2x2 + 10x3 + 20x4 ≥ 10
50x1 + 20x2 + 10x3 + 30x4 ≥ 70
80x1 + 70x2 + 10x3 + 80x4 ≥ 250
x1, x2, x3, x4 ≥ 0
Sendo: x1 = litros de leite a serem consumidos por dia pelas crianças
x2 = quilos de carne a serem consumidos por dia pelas crianças
x3 = quilos de peixe a serem consumidos por dia pelas crianças
x4 = 100 g de salada a serem consumidos por dia pelas crianças
As restrições para o dual do problema são dadas pelos seguintes conjuntos de inequações:
2y1 + 2y2 + 10y3 + 20y4 ≤ 10; 50y1 + 20y2 + 10y3 + 30y4 ≤ 70; 80y1 + 70y2 + 10y3 + 80y4 ≤ 250
2y1 + 2y2 + 10y3 + 20y4 ≥ 10; 50y1 + 20y2 + 10y3 + 30y4 ≥ 70; 80y1 + 70y2 + 10y3 + 80y4 ≥ 250
2y1 + 50y2 + 80y3≥2; 2y1 +20y2 + 70y3 ≥ 20
2y1 + 50y2 + 80y3 ≥ 2; 2y1 + 20y2 + 70y3 ≥ 20; 10y1 + 10y2 + 10y3 ≥ 25; 20y1 + 30y2 + 80y3 ≥ 3
2y1 + 50y2 + 80y3 ≤ 2; 2y1 + 20y2 + 70y3 ≤ 20; 10y1 + 10y2 + 10y3 ≤ 25; 20y1 + 30y2 + 80y3 ≤3
filipmotta:
Qual opcao é a correta ? Não ficou claro
Soluções para a tarefa
Respondido por
22
Resposta:
Substituindo os valores de y e z na primeira equação:
x + 9.10 + 2.30 = 160
x + 90 + 60 = 160
x = 160 - 150
x = 10.
Portanto, as quantidades de alimentos x, y e z são, respectivamente, iguais a 10, 10 e 30.
Explicação passo a passo:
Respondido por
10
Resposta:
Max W = 10y1 + 70y2 + 250y3
Explicação passo a passo:
Gabarito estacio
Perguntas interessantes
História,
5 meses atrás
Física,
5 meses atrás
Matemática,
5 meses atrás
História,
5 meses atrás
Matemática,
11 meses atrás
Física,
11 meses atrás