sequencia de bolinhas figura 1 =2 bolinhas figura 2 = 5 bolinhas figura 3=10 bolinhas figura 4= 17 figura 5= 26 quantas bolinhas tera a figura 18
Soluções para a tarefa
Resposta:
325
Explicação passo a passo:
Vamos construir uma PA, onde o primeiro termo é a quantidade de bolinhas figura 1, o termo é a quantidade de bolinhas da figura 2, e assim por diante.
Veja que essa PA não faz sentido, pois não é possível encontrar uma razão constante. Porém vamos construi uma outra PA, que vou chamar de .
Nessa minha nova PA , o primeiro termo, ou seja, , será a diferença entre o segundo e o primeiro termo da primeira PA que eu fiz. O segundo termo da PA será a diferença entre o terceiro e o segundo termo da primeira PA, e assim por diante. Então:
Veja que agora sim eu encontrei uma PA que faz sentido, com razão igual a dois. A PA é uma PA de segunda ordem.
Podemos relacionar as duas PA's da seguinte forma:
Ou seja, um termo qualquer da primeira PA é o primeiro termo dessa PA menos o termo n-1 da PA .
Como queremos o termo 18 da PA (pois essa é a PA da quantidade de bolinhas por figura), temos que:
é o termo que queremos
é o primeiro termo da PA que não faz sentido, que é 2
é a soma dos 17 primeiros termos da PA de segunda ordem.
Calculando :
a PA é , que tem razão 2. Como queremos o termo 17, nosso an é 17:
Calculando a soma dos 17 primeiros termos dessa PA:
Agora, voltando para a fórmula :
Ou seja, a figura 18 tem 325 bolinhas.