Seja B = (i,j,k) uma base ortonormal, u = (4,-2,2) e v = (3,1,1). (a) Encontre vetores p e q tais que v = p + q, com p paralelo a u e q perpendicular a u. (b) Calcule w ortogonal a u e v sabendo que w.(1,1,1) = -1.
Soluções para a tarefa
Respondido por
1
Caso tenha problemas para visualizar a resposta pelo aplicativo, experimente abrir pelo navegador: https://brainly.com.br/tarefa/8086884
__________
Dados dois vetores do![\mathbb{R}^3 \mathbb{R}^3](https://tex.z-dn.net/?f=%5Cmathbb%7BR%7D%5E3)
e ![\overrightarrow{v}=(3,\,1,\,1) \overrightarrow{v}=(3,\,1,\,1)](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bv%7D%3D%283%2C%5C%2C1%2C%5C%2C1%29)
(a) encontrar os vetores
e
tais que
•
![\mathbf{(i)} \mathbf{(i)}](https://tex.z-dn.net/?f=%5Cmathbf%7B%28i%29%7D)
•
![\mathbf{(ii)} \mathbf{(ii)}](https://tex.z-dn.net/?f=%5Cmathbf%7B%28ii%29%7D)
•
![\mathbf{(iii)} \mathbf{(iii)}](https://tex.z-dn.net/?f=%5Cmathbf%7B%28iii%29%7D)
De acordo com
queremos decompor o vetor
em duas componentes
e ![\overrightarrow{q}. \overrightarrow{q}.](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bq%7D.)
Por
concluímos que
nada mais é do que a projeção ortogonal de
na direção de ![\overrightarrow{u}: \overrightarrow{u}:](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bu%7D%3A)
![\overrightarrow{p}=\mathrm{proj}_{\overrightarrow{u}}\overrightarrow{v}\\\\\\ =\dfrac{\left \langle \overrightarrow{u},\,\overrightarrow{v}\right \rangle}{\|\overrightarrow{u}\|^2}\cdot \overrightarrow{u}\\\\\\ =\dfrac{\left\langle(4,\,-2,\,2),\,(3,\,1,\,1)\right\rangle}{\|(4,\,-2,\,2)\|^2}\cdot (4,\,-2,\,2) \overrightarrow{p}=\mathrm{proj}_{\overrightarrow{u}}\overrightarrow{v}\\\\\\ =\dfrac{\left \langle \overrightarrow{u},\,\overrightarrow{v}\right \rangle}{\|\overrightarrow{u}\|^2}\cdot \overrightarrow{u}\\\\\\ =\dfrac{\left\langle(4,\,-2,\,2),\,(3,\,1,\,1)\right\rangle}{\|(4,\,-2,\,2)\|^2}\cdot (4,\,-2,\,2)](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bp%7D%3D%5Cmathrm%7Bproj%7D_%7B%5Coverrightarrow%7Bu%7D%7D%5Coverrightarrow%7Bv%7D%5C%5C%5C%5C%5C%5C+%3D%5Cdfrac%7B%5Cleft+%5Clangle+%5Coverrightarrow%7Bu%7D%2C%5C%2C%5Coverrightarrow%7Bv%7D%5Cright+%5Crangle%7D%7B%5C%7C%5Coverrightarrow%7Bu%7D%5C%7C%5E2%7D%5Ccdot+%5Coverrightarrow%7Bu%7D%5C%5C%5C%5C%5C%5C+%3D%5Cdfrac%7B%5Cleft%5Clangle%284%2C%5C%2C-2%2C%5C%2C2%29%2C%5C%2C%283%2C%5C%2C1%2C%5C%2C1%29%5Cright%5Crangle%7D%7B%5C%7C%284%2C%5C%2C-2%2C%5C%2C2%29%5C%7C%5E2%7D%5Ccdot+%284%2C%5C%2C-2%2C%5C%2C2%29)
![=\dfrac{4\cdot 3-2\cdot 1+2\cdot 1}{4^2+(-2)^2+2^2}\cdot (4,\,-2,\,2)\\\\\\ =\dfrac{12-2+2}{16+4+4}\cdot (4,\,-2,\,2)\\\\\\ =\dfrac{12}{24}\cdot (4,\,-2,\,2) =\dfrac{4\cdot 3-2\cdot 1+2\cdot 1}{4^2+(-2)^2+2^2}\cdot (4,\,-2,\,2)\\\\\\ =\dfrac{12-2+2}{16+4+4}\cdot (4,\,-2,\,2)\\\\\\ =\dfrac{12}{24}\cdot (4,\,-2,\,2)](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B4%5Ccdot+3-2%5Ccdot+1%2B2%5Ccdot+1%7D%7B4%5E2%2B%28-2%29%5E2%2B2%5E2%7D%5Ccdot+%284%2C%5C%2C-2%2C%5C%2C2%29%5C%5C%5C%5C%5C%5C+%3D%5Cdfrac%7B12-2%2B2%7D%7B16%2B4%2B4%7D%5Ccdot+%284%2C%5C%2C-2%2C%5C%2C2%29%5C%5C%5C%5C%5C%5C+%3D%5Cdfrac%7B12%7D%7B24%7D%5Ccdot+%284%2C%5C%2C-2%2C%5C%2C2%29)
![=\dfrac{1}{2}\cdot (4,\,-2,\,2)\\\\\\\\ \therefore~~\overrightarrow{p}=(2,\,-1,\,1)\qquad\quad\checkmark =\dfrac{1}{2}\cdot (4,\,-2,\,2)\\\\\\\\ \therefore~~\overrightarrow{p}=(2,\,-1,\,1)\qquad\quad\checkmark](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B1%7D%7B2%7D%5Ccdot+%284%2C%5C%2C-2%2C%5C%2C2%29%5C%5C%5C%5C%5C%5C%5C%5C+%5Ctherefore%7E%7E%5Coverrightarrow%7Bp%7D%3D%282%2C%5C%2C-1%2C%5C%2C1%29%5Cqquad%5Cquad%5Ccheckmark)
Encontrando o vetor![\overrightarrow{q:} \overrightarrow{q:}](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bq%3A%7D)
![\overrightarrow{q}=\overrightarrow{v}-\overrightarrow{p}\\\\ =(3,\,1,\,1)-(2,\,-1,\,1)\\\\ =(3-2,\,1-(-1),\,1-1)\\\\ \therefore~~\overrightarrow{q}=(1,\,2,\,0)\qquad\quad\checkmark \overrightarrow{q}=\overrightarrow{v}-\overrightarrow{p}\\\\ =(3,\,1,\,1)-(2,\,-1,\,1)\\\\ =(3-2,\,1-(-1),\,1-1)\\\\ \therefore~~\overrightarrow{q}=(1,\,2,\,0)\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bq%7D%3D%5Coverrightarrow%7Bv%7D-%5Coverrightarrow%7Bp%7D%5C%5C%5C%5C+%3D%283%2C%5C%2C1%2C%5C%2C1%29-%282%2C%5C%2C-1%2C%5C%2C1%29%5C%5C%5C%5C+%3D%283-2%2C%5C%2C1-%28-1%29%2C%5C%2C1-1%29%5C%5C%5C%5C+%5Ctherefore%7E%7E%5Coverrightarrow%7Bq%7D%3D%281%2C%5C%2C2%2C%5C%2C0%29%5Cqquad%5Cquad%5Ccheckmark)
__________
(b) Encontrar o vetor
de modo que
•
![\mathbf{(iv)} \mathbf{(iv)}](https://tex.z-dn.net/?f=%5Cmathbf%7B%28iv%29%7D)
•
![\mathbf{(v)} \mathbf{(v)}](https://tex.z-dn.net/?f=%5Cmathbf%7B%28v%29%7D)
•
![\mathbf{(vi)} \mathbf{(vi)}](https://tex.z-dn.net/?f=%5Cmathbf%7B%28vi%29%7D)
Dois vetores são ortogonais somente se o produto escalar entre eles for igual a zero.
Então, devemos ter
•![\left\langle\overrightarrow{w},\,\overrightarrow{u}\right\rangle=0 \left\langle\overrightarrow{w},\,\overrightarrow{u}\right\rangle=0](https://tex.z-dn.net/?f=%5Cleft%5Clangle%5Coverrightarrow%7Bw%7D%2C%5C%2C%5Coverrightarrow%7Bu%7D%5Cright%5Crangle%3D0)
![\left\langle(a,\,b,\,c),\,(4,\,-2,\,2)\right\rangle=0\\\\ 4a-2b+2c=0\qquad\quad\mathbf{(vii)} \left\langle(a,\,b,\,c),\,(4,\,-2,\,2)\right\rangle=0\\\\ 4a-2b+2c=0\qquad\quad\mathbf{(vii)}](https://tex.z-dn.net/?f=%5Cleft%5Clangle%28a%2C%5C%2Cb%2C%5C%2Cc%29%2C%5C%2C%284%2C%5C%2C-2%2C%5C%2C2%29%5Cright%5Crangle%3D0%5C%5C%5C%5C+4a-2b%2B2c%3D0%5Cqquad%5Cquad%5Cmathbf%7B%28vii%29%7D)
•![\left\langle\overrightarrow{w},\,\overrightarrow{v}\right\rangle=0 \left\langle\overrightarrow{w},\,\overrightarrow{v}\right\rangle=0](https://tex.z-dn.net/?f=%5Cleft%5Clangle%5Coverrightarrow%7Bw%7D%2C%5C%2C%5Coverrightarrow%7Bv%7D%5Cright%5Crangle%3D0)
![\left\langle(a,\,b,\,c),\,(3,\,1,\,1)\right\rangle=0\\\\ 3a+b+c=0\qquad\quad\mathbf{(viii)} \left\langle(a,\,b,\,c),\,(3,\,1,\,1)\right\rangle=0\\\\ 3a+b+c=0\qquad\quad\mathbf{(viii)}](https://tex.z-dn.net/?f=%5Cleft%5Clangle%28a%2C%5C%2Cb%2C%5C%2Cc%29%2C%5C%2C%283%2C%5C%2C1%2C%5C%2C1%29%5Cright%5Crangle%3D0%5C%5C%5C%5C+3a%2Bb%2Bc%3D0%5Cqquad%5Cquad%5Cmathbf%7B%28viii%29%7D)
Além disso, por
devemos ter também
![\left\langle(a,\,b,\,c),\,(1,\,1,\,1)\right\rangle=-1\\\\ a+b+c=-1\qquad\quad\mathbf{(ix)} \left\langle(a,\,b,\,c),\,(1,\,1,\,1)\right\rangle=-1\\\\ a+b+c=-1\qquad\quad\mathbf{(ix)}](https://tex.z-dn.net/?f=%5Cleft%5Clangle%28a%2C%5C%2Cb%2C%5C%2Cc%29%2C%5C%2C%281%2C%5C%2C1%2C%5C%2C1%29%5Cright%5Crangle%3D-1%5C%5C%5C%5C+a%2Bb%2Bc%3D-1%5Cqquad%5Cquad%5Cmathbf%7B%28ix%29%7D)
Agora é só resolver o sistema formado pelas equações![\mathbf{(vii),~~(viii),~~(ix):} \mathbf{(vii),~~(viii),~~(ix):}](https://tex.z-dn.net/?f=%5Cmathbf%7B%28vii%29%2C%7E%7E%28viii%29%2C%7E%7E%28ix%29%3A%7D)
![\left\{\! \begin{array}{rcrcrcrc} 4a&\!\!\!-\!\!\!&2b&\!\!\!+\!\!\!&2c&\!\!\!=\!\!\!&0&\qquad\mathbf{(vii)}\\ 3a&\!\!\!+\!\!\!&b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&0&\qquad\mathbf{(viii)}\\ a&\!\!\!+\!\!\!&b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&-1&\qquad\mathbf{(ix)}\\ \end{array} \right. \left\{\! \begin{array}{rcrcrcrc} 4a&\!\!\!-\!\!\!&2b&\!\!\!+\!\!\!&2c&\!\!\!=\!\!\!&0&\qquad\mathbf{(vii)}\\ 3a&\!\!\!+\!\!\!&b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&0&\qquad\mathbf{(viii)}\\ a&\!\!\!+\!\!\!&b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&-1&\qquad\mathbf{(ix)}\\ \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5C%21+%5Cbegin%7Barray%7D%7Brcrcrcrc%7D+4a%26amp%3B%5C%21%5C%21%5C%21-%5C%21%5C%21%5C%21%26amp%3B2b%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3B2c%26amp%3B%5C%21%5C%21%5C%21%3D%5C%21%5C%21%5C%21%26amp%3B0%26amp%3B%5Cqquad%5Cmathbf%7B%28vii%29%7D%5C%5C+3a%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3Bb%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3Bc%26amp%3B%5C%21%5C%21%5C%21%3D%5C%21%5C%21%5C%21%26amp%3B0%26amp%3B%5Cqquad%5Cmathbf%7B%28viii%29%7D%5C%5C+a%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3Bb%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3Bc%26amp%3B%5C%21%5C%21%5C%21%3D%5C%21%5C%21%5C%21%26amp%3B-1%26amp%3B%5Cqquad%5Cmathbf%7B%28ix%29%7D%5C%5C+%5Cend%7Barray%7D+%5Cright.)
Subtraindo membro a membro a equação
da equação
obtemos
![3a-a=0+1\\\\ 2a=1\\\\ a=\dfrac{1}{2}\qquad\quad\checkmark 3a-a=0+1\\\\ 2a=1\\\\ a=\dfrac{1}{2}\qquad\quad\checkmark](https://tex.z-dn.net/?f=3a-a%3D0%2B1%5C%5C%5C%5C+2a%3D1%5C%5C%5C%5C+a%3D%5Cdfrac%7B1%7D%7B2%7D%5Cqquad%5Cquad%5Ccheckmark)
Substituindo este valor nas equações do sistema, obtemos
![\left\{\! \begin{array}{rcrcrcr} 4\cdot\frac{1}{2}&\!\!\!-\!\!\!&2b&\!\!\!+\!\!\!&2c&\!\!\!=\!\!\!&0\\\\ 3\cdot\frac{1}{2}&\!\!\!+\!\!\!&b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&0\\\\ \frac{1}{2}&\!\!\!+\!\!\!&b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&-1\\ \end{array} \right.\\\\\\\\ \left\{\! \begin{array}{rcrcrcr} 2&\!\!\!-\!\!\!&2b&\!\!\!+\!\!\!&2c&\!\!\!=\!\!\!&0\\\\ \frac{3}{2}&\!\!\!+\!\!\!&b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&0\\\\ \frac{1}{2}&\!\!\!+\!\!\!&b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&-1 \end{array} \right. \left\{\! \begin{array}{rcrcrcr} 4\cdot\frac{1}{2}&\!\!\!-\!\!\!&2b&\!\!\!+\!\!\!&2c&\!\!\!=\!\!\!&0\\\\ 3\cdot\frac{1}{2}&\!\!\!+\!\!\!&b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&0\\\\ \frac{1}{2}&\!\!\!+\!\!\!&b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&-1\\ \end{array} \right.\\\\\\\\ \left\{\! \begin{array}{rcrcrcr} 2&\!\!\!-\!\!\!&2b&\!\!\!+\!\!\!&2c&\!\!\!=\!\!\!&0\\\\ \frac{3}{2}&\!\!\!+\!\!\!&b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&0\\\\ \frac{1}{2}&\!\!\!+\!\!\!&b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&-1 \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5C%21+%5Cbegin%7Barray%7D%7Brcrcrcr%7D+4%5Ccdot%5Cfrac%7B1%7D%7B2%7D%26amp%3B%5C%21%5C%21%5C%21-%5C%21%5C%21%5C%21%26amp%3B2b%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3B2c%26amp%3B%5C%21%5C%21%5C%21%3D%5C%21%5C%21%5C%21%26amp%3B0%5C%5C%5C%5C+3%5Ccdot%5Cfrac%7B1%7D%7B2%7D%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3Bb%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3Bc%26amp%3B%5C%21%5C%21%5C%21%3D%5C%21%5C%21%5C%21%26amp%3B0%5C%5C%5C%5C+%5Cfrac%7B1%7D%7B2%7D%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3Bb%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3Bc%26amp%3B%5C%21%5C%21%5C%21%3D%5C%21%5C%21%5C%21%26amp%3B-1%5C%5C+%5Cend%7Barray%7D+%5Cright.%5C%5C%5C%5C%5C%5C%5C%5C+%5Cleft%5C%7B%5C%21+%5Cbegin%7Barray%7D%7Brcrcrcr%7D+2%26amp%3B%5C%21%5C%21%5C%21-%5C%21%5C%21%5C%21%26amp%3B2b%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3B2c%26amp%3B%5C%21%5C%21%5C%21%3D%5C%21%5C%21%5C%21%26amp%3B0%5C%5C%5C%5C+%5Cfrac%7B3%7D%7B2%7D%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3Bb%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3Bc%26amp%3B%5C%21%5C%21%5C%21%3D%5C%21%5C%21%5C%21%26amp%3B0%5C%5C%5C%5C+%5Cfrac%7B1%7D%7B2%7D%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3Bb%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3Bc%26amp%3B%5C%21%5C%21%5C%21%3D%5C%21%5C%21%5C%21%26amp%3B-1+%5Cend%7Barray%7D+%5Cright.)
As duas últimas equações são equivalentes podem ser reduzidas à mesma expressão. Reorganizando o sistema, obtemos
![\left\{\! \begin{array}{rcrcr} -2b&\!\!\!+\!\!\!&2c&\!\!\!=\!\!\!&-2\\\\ b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&-\frac{3}{2} \end{array} \right.\\\\\\\\ \left\{\! \begin{array}{rcrcr} -2b&\!\!\!+\!\!\!&2c&\!\!\!=\!\!\!&-2\\2b&\!\!\!+\!\!\!&2c&\!\!\!=\!\!\!&-3 \end{array} \right. \left\{\! \begin{array}{rcrcr} -2b&\!\!\!+\!\!\!&2c&\!\!\!=\!\!\!&-2\\\\ b&\!\!\!+\!\!\!&c&\!\!\!=\!\!\!&-\frac{3}{2} \end{array} \right.\\\\\\\\ \left\{\! \begin{array}{rcrcr} -2b&\!\!\!+\!\!\!&2c&\!\!\!=\!\!\!&-2\\2b&\!\!\!+\!\!\!&2c&\!\!\!=\!\!\!&-3 \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5C%21+%5Cbegin%7Barray%7D%7Brcrcr%7D+-2b%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3B2c%26amp%3B%5C%21%5C%21%5C%21%3D%5C%21%5C%21%5C%21%26amp%3B-2%5C%5C%5C%5C+b%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3Bc%26amp%3B%5C%21%5C%21%5C%21%3D%5C%21%5C%21%5C%21%26amp%3B-%5Cfrac%7B3%7D%7B2%7D+%5Cend%7Barray%7D+%5Cright.%5C%5C%5C%5C%5C%5C%5C%5C+%5Cleft%5C%7B%5C%21+%5Cbegin%7Barray%7D%7Brcrcr%7D+-2b%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3B2c%26amp%3B%5C%21%5C%21%5C%21%3D%5C%21%5C%21%5C%21%26amp%3B-2%5C%5C2b%26amp%3B%5C%21%5C%21%5C%21%2B%5C%21%5C%21%5C%21%26amp%3B2c%26amp%3B%5C%21%5C%21%5C%21%3D%5C%21%5C%21%5C%21%26amp%3B-3+%5Cend%7Barray%7D+%5Cright.)
Resolvendo o sistema acima pelo método da adição, finalmente obtemos
![-2b+2c+2b+2c=-2-3\\\\ 4c=-5\\\\ c=-\,\dfrac{5}{4}\qquad\quad\checkmark -2b+2c+2b+2c=-2-3\\\\ 4c=-5\\\\ c=-\,\dfrac{5}{4}\qquad\quad\checkmark](https://tex.z-dn.net/?f=-2b%2B2c%2B2b%2B2c%3D-2-3%5C%5C%5C%5C+4c%3D-5%5C%5C%5C%5C+c%3D-%5C%2C%5Cdfrac%7B5%7D%7B4%7D%5Cqquad%5Cquad%5Ccheckmark)
e o valor de
é encontrado substituindo o valor acima em uma das equações:
![2\cdot \left(\!-\,\dfrac{5}{4}\right)+2c=-3\\\\\\ -\,\frac{10}{4}+2c=-3\\\\\\ -10+8c=-12\\\\ 8c=-12+10\\\\ 8c=-2\\\\ c=-\,\dfrac{2}{8}\\\\\\ c=-\,\dfrac{1}{4}\qquad\quad\checkmark 2\cdot \left(\!-\,\dfrac{5}{4}\right)+2c=-3\\\\\\ -\,\frac{10}{4}+2c=-3\\\\\\ -10+8c=-12\\\\ 8c=-12+10\\\\ 8c=-2\\\\ c=-\,\dfrac{2}{8}\\\\\\ c=-\,\dfrac{1}{4}\qquad\quad\checkmark](https://tex.z-dn.net/?f=2%5Ccdot+%5Cleft%28%5C%21-%5C%2C%5Cdfrac%7B5%7D%7B4%7D%5Cright%29%2B2c%3D-3%5C%5C%5C%5C%5C%5C+-%5C%2C%5Cfrac%7B10%7D%7B4%7D%2B2c%3D-3%5C%5C%5C%5C%5C%5C+-10%2B8c%3D-12%5C%5C%5C%5C+8c%3D-12%2B10%5C%5C%5C%5C+8c%3D-2%5C%5C%5C%5C+c%3D-%5C%2C%5Cdfrac%7B2%7D%7B8%7D%5C%5C%5C%5C%5C%5C+c%3D-%5C%2C%5Cdfrac%7B1%7D%7B4%7D%5Cqquad%5Cquad%5Ccheckmark)
Logo, o vetor procurado é
![\boxed{\begin{array}{c}\overrightarrow{w}=\left(\dfrac{1}{2},\,-\,\dfrac{1}{4},\,-\,\dfrac{5}{4}\right) \end{array}}\qquad\quad\checkmark \boxed{\begin{array}{c}\overrightarrow{w}=\left(\dfrac{1}{2},\,-\,\dfrac{1}{4},\,-\,\dfrac{5}{4}\right) \end{array}}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Coverrightarrow%7Bw%7D%3D%5Cleft%28%5Cdfrac%7B1%7D%7B2%7D%2C%5C%2C-%5C%2C%5Cdfrac%7B1%7D%7B4%7D%2C%5C%2C-%5C%2C%5Cdfrac%7B5%7D%7B4%7D%5Cright%29+%5Cend%7Barray%7D%7D%5Cqquad%5Cquad%5Ccheckmark)
Bons estudos! :-)
__________
Dados dois vetores do
(a) encontrar os vetores
•
•
•
De acordo com
Por
Encontrando o vetor
__________
(b) Encontrar o vetor
•
•
•
Dois vetores são ortogonais somente se o produto escalar entre eles for igual a zero.
Então, devemos ter
•
•
Além disso, por
Agora é só resolver o sistema formado pelas equações
Subtraindo membro a membro a equação
Substituindo este valor nas equações do sistema, obtemos
As duas últimas equações são equivalentes podem ser reduzidas à mesma expressão. Reorganizando o sistema, obtemos
Resolvendo o sistema acima pelo método da adição, finalmente obtemos
e o valor de
Logo, o vetor procurado é
Bons estudos! :-)
dkiwilson:
Obrigado. Deus lhe abençoe
Perguntas interessantes
Artes,
11 meses atrás
Matemática,
11 meses atrás
Ed. Física,
11 meses atrás
Filosofia,
1 ano atrás
Física,
1 ano atrás
Pedagogia,
1 ano atrás
Português,
1 ano atrás
Química,
1 ano atrás