Se f(x, y, z) = xsen(yz), determine o gradiente de f e a derivada direcional de f, no ponto (1, 3, 0),na direção u = (1, 2, −1).
Soluções para a tarefa
Respondido por
6
Primero hallemos el vector unitario en dirección de ![\vec u \vec u](https://tex.z-dn.net/?f=%5Cvec+u)
![\vec \mu =\dfrac{\vec u}{\|\vec u\|}=\dfrac{(1,2,-1)}{\sqrt{6}} \vec \mu =\dfrac{\vec u}{\|\vec u\|}=\dfrac{(1,2,-1)}{\sqrt{6}}](https://tex.z-dn.net/?f=%5Cvec+%5Cmu+%3D%5Cdfrac%7B%5Cvec+u%7D%7B%5C%7C%5Cvec+u%5C%7C%7D%3D%5Cdfrac%7B%281%2C2%2C-1%29%7D%7B%5Csqrt%7B6%7D%7D)
Luego hacemos los cálculos pertinentes
![D_{\vec \mu} f(x,y,z)=\nabla f(x,y,z)\cdot \vec \mu\\ \\
D_{\vec \mu} f(x,y,z)=(f_x,f_y,f_z)\cdot \dfrac{(1,2,-1)}{\sqrt{6}}\\ \\
D_{\vec \mu} f(x,y,z)=(\sin(yz),xz\cos(yz),xy\cos(yz))\cdot \dfrac{(1,2,-1)}{\sqrt{6}}\\ \\
D_{\vec \mu} f(x,y,z)=\dfrac{\sin(yz)+2xz\cos(yz)-xy\cos(yz)}{\sqrt6}\\ \\
\boxed{D_{\vec \mu} f(1,3,0)=-\dfrac{3}{\sqrt6}}
D_{\vec \mu} f(x,y,z)=\nabla f(x,y,z)\cdot \vec \mu\\ \\
D_{\vec \mu} f(x,y,z)=(f_x,f_y,f_z)\cdot \dfrac{(1,2,-1)}{\sqrt{6}}\\ \\
D_{\vec \mu} f(x,y,z)=(\sin(yz),xz\cos(yz),xy\cos(yz))\cdot \dfrac{(1,2,-1)}{\sqrt{6}}\\ \\
D_{\vec \mu} f(x,y,z)=\dfrac{\sin(yz)+2xz\cos(yz)-xy\cos(yz)}{\sqrt6}\\ \\
\boxed{D_{\vec \mu} f(1,3,0)=-\dfrac{3}{\sqrt6}}](https://tex.z-dn.net/?f=D_%7B%5Cvec+%5Cmu%7D+f%28x%2Cy%2Cz%29%3D%5Cnabla+f%28x%2Cy%2Cz%29%5Ccdot+%5Cvec+%5Cmu%5C%5C+%5C%5C%0AD_%7B%5Cvec+%5Cmu%7D+f%28x%2Cy%2Cz%29%3D%28f_x%2Cf_y%2Cf_z%29%5Ccdot+%5Cdfrac%7B%281%2C2%2C-1%29%7D%7B%5Csqrt%7B6%7D%7D%5C%5C+%5C%5C%0AD_%7B%5Cvec+%5Cmu%7D+f%28x%2Cy%2Cz%29%3D%28%5Csin%28yz%29%2Cxz%5Ccos%28yz%29%2Cxy%5Ccos%28yz%29%29%5Ccdot+%5Cdfrac%7B%281%2C2%2C-1%29%7D%7B%5Csqrt%7B6%7D%7D%5C%5C+%5C%5C%0AD_%7B%5Cvec+%5Cmu%7D+f%28x%2Cy%2Cz%29%3D%5Cdfrac%7B%5Csin%28yz%29%2B2xz%5Ccos%28yz%29-xy%5Ccos%28yz%29%7D%7B%5Csqrt6%7D%5C%5C+%5C%5C%0A%5Cboxed%7BD_%7B%5Cvec+%5Cmu%7D+f%281%2C3%2C0%29%3D-%5Cdfrac%7B3%7D%7B%5Csqrt6%7D%7D%0A)
Luego hacemos los cálculos pertinentes
Perguntas interessantes