Matemática, perguntado por gabiacmmuller, 8 meses atrás

Resolva os logaritmos abaixo:
a) log16 64
b) log5 0,000064
c) log49 √73
d) log√2 4
e) log √43 2
f) log2√8
g) log3 27
h) log4 8
i) log2 0,25
j) log2√64

Soluções para a tarefa

Respondido por PhillDays
5

.

EXPLICAÇÃO PASSO-A-PASSO______✍

❄☃ \sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly}) ☘☀

.

☺lá, Gabi, como tens passado nestes tempos de quarentena⁉ E os estudos à distância, como vão⁉ Espero que bem❗ Acompanhe a resolução abaixo. ✌

.

Ⓐ_____________________________✍

.

\huge\gray{\boxed{\sf\blue{ log_{16}(64) }}}

.

\large\blue{\text{$\sf 16^x = 64 $}}

\large\blue{\text{$\sf (4^2)^x = 4^3 $}}

\large\blue{\text{$\sf 4^{2x} = 4^3 $}}

.

☔ Pela simetria e por ambos os lados serem funções bijetivas temos que 2x = 3, mas vamos (pelo menos para esse primeiro exercício) demonstrar a manipulação algébrica que confirma isto. Aplicando a função Logaritmica em ambos os lados da igualdade temos

.

\large\blue{\text{$\sf log(4^{2x}) = log(4^3) $}}

.

☔ Temos como propriedade da Função Logaritmo que uma potência do logaritmando pode ser reescrita como um coeficiente que multiplica o log , conhecida como Regra do Tombo

.

\large\red{\boxed{\pink{\boxed{\begin{array}{rcl}&&\\&\orange{\rm log_c(a^b) \iff b \cdot log_c(a)}&\\&&\\\end{array}}}}}

.

☔ Portanto temos que

.

\large\blue{\text{$\sf 2x \cdot log(4) = 3 \cdot log(4) $}}

.

☔ Dividindo ambos os lados da igualdade por log(4) temos

.

\large\blue{\text{$\sf \dfrac{2x \cdot log(4)}{log(4)} = \dfrac{3 \cdot log(4)}{log(4)} $}}

\large\blue{\text{$\sf 2x = 3 $}}

\huge\blue{\text{$\sf x = 1,5 $}}  ✅

.

Ⓑ_____________________________✍

.

\huge\gray{\boxed{\sf\blue{ log_{5}(0,000064) }}}

.

\large\blue{\text{$\sf 5^x = \dfrac{2^6}{10^6} $}}

\large\blue{\text{$\sf 5^x = \dfrac{2^6}{2 \cdot 5)^6} $}}

\large\blue{\text{$\sf 5^x = \dfrac{\diagup\!\!\!\!{2}^6}{\diagup\!\!\!\!{2}^6 \cdot 5^6} $}}

\large\blue{\text{$\sf 5^x = \dfrac{1}{5^6} $}}

\large\blue{\text{$\sf 5^x = 5^{-6} $}}

\huge\blue{\text{$\sf x = -6 $}}  ✅

.

Ⓒ_____________________________✍

.

\huge\gray{\boxed{\sf\blue{ log_{49}(\sqrt{73}) }}}

.

\large\blue{\text{$\sf 49^x = 73^{\frac{1}{2}} $}}

\large\blue{\text{$\sf log(49^x) = log(73^{\frac{1}{2}}) $}}

\large\blue{\text{$\sf x \cdot log(49) = \dfrac{log(73)}{2} $}}

\huge\blue{\text{$\sf x = \dfrac{log(73)}{2 \cdot log(49)} $}}  ✅

.

Ⓓ_____________________________✍

.

\huge\gray{\boxed{\sf\blue{ log_{\sqrt{2}}(4) }}}

.

\large\blue{\text{$\sf (2^{\frac{1}{2}})^x = 2^2 $}}

\large\blue{\text{$\sf 2^{\frac{x}{2}} = 2^2 $}}

\large\blue{\text{$\sf \dfrac{x}{2} = 2 $}}

\huge\blue{\text{$\sf x = 4 $}}  ✅

.

Ⓔ_____________________________✍

.

\huge\gray{\boxed{\sf\blue{ log_{\sqrt{43}}(2) }}}

.

\large\blue{\text{$\sf (43^{\frac{1}{2}})^x = 2 $}}

\large\blue{\text{$\sf 43^{\frac{x}{2}} = 2 $}}

\large\blue{\text{$\sf log(43^{\frac{x}{2}}) = log(2) $}}

\large\blue{\text{$\sf \dfrac{x \cdot log(43)}{2} = log(2) $}}

\huge\blue{\text{$\sf x = \dfrac{2 \cdot log(2)}{log(43)} $}}  ✅

.

Ⓕ_____________________________✍

.

\huge\gray{\boxed{\sf\blue{ log_{2}(8) }}}

.

\large\blue{\text{$\sf 2^x = 2^3 $}}

\huge\blue{\text{$\sf x = 3 $}}  ✅

.

Ⓖ_____________________________✍

.

\huge\gray{\boxed{\sf\blue{ log_{3}(27) }}}

.

\large\blue{\text{$\sf 3^x = 3^3 $}}

\huge\blue{\text{$\sf x = 3 $}}  ✅

.

Ⓗ_____________________________✍

.

\huge\gray{\boxed{\sf\blue{ log_{4}(8) }}}

.

\large\blue{\text{$\sf (2^2)^x = 2^3 $}}

\large\blue{\text{$\sf 2^{2x} = 2^3 $}}

\large\blue{\text{$\sf 2x = 3 $}}

\huge\blue{\text{$\sf x = 1,5 $}}  ✅

.

Ⓘ_____________________________✍

.

\huge\gray{\boxed{\sf\blue{ log_{2}(0,25) }}}

.

\large\blue{\text{$\sf 2^x = \dfrac{5^2}{10^2} $}}

\large\blue{\text{$\sf 2^x = \dfrac{5^2}{(2 \cdot 5)^2} $}}

\large\blue{\text{$\sf 2^x = \dfrac{\diagup\!\!\!\!{5}^2}{2^2 \cdot \diagup\!\!\!\!{5}^2} $}}

\large\blue{\text{$\sf 2^x = \dfrac{1}{2^2} $}}

\large\blue{\text{$\sf 2^x = 2^{-2} $}}

\huge\blue{\text{$\sf x = -2 $}}  ✅

.

Ⓙ_____________________________✍

.

\huge\gray{\boxed{\sf\blue{ log_{2}(\sqrt{64}) }}}

.

\large\blue{\text{$\sf 2^x = (2^6)^{\frac{1}{2}} $}}

\large\blue{\text{$\sf 2^x = 2^{\frac{6}{2}} $}}

\large\blue{\text{$\sf 2^x = 2^3 $}}

\huge\blue{\text{$\sf x = 3 $}}  ✅

.

.

.

.

_______________________________☁

☕ Bons estudos.

(Dúvidas nos comentários) ☄

__________________________\LaTeX

❄☃ \sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly}) ☘☀

.

.

.

.

"Absque sudore et labore nullum opus perfectum est."

Anexos:
Perguntas interessantes