Matemática, perguntado por schimymy, 4 meses atrás

resolva em R: 2 log 4 (3x + 43) - log2 (x + 1 ) = 1 + log2 (x - 3)

Soluções para a tarefa

Respondido por auditsys
0

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{2\:log_4\:(3x + 43) - log_2\:(x + 1) = 1 + log_2\:(x - 3)}

\mathsf{log_2\:(3x + 43) - log_2\:(x + 1) = 1 + log_2\:(x - 3)}

\mathsf{log_2\:(3x + 43) - log_2\:(x + 1) = log_2\:2 + log_2\:(x - 3)}

\mathsf{log_2\:\dfrac{3x + 43}{x + 1} = log_2\:2(x - 3)}

\mathsf{\dfrac{3x + 43}{x + 1} = x - 3}

\mathsf{3x + 43 = x^2 - 3x + x - 3}

\mathsf{3x + 43 = x^2 - 2x - 3}

\mathsf{x^2 - 5x - 46 = 0}

\mathsf{\Delta = b^2 - 4.a.c}

\mathsf{\Delta = (-5)^2 - 4.1.(-46)}

\mathsf{\Delta = 25 + 184}

\mathsf{\Delta = 209}

\mathsf{x = \dfrac{-b \pm \sqrt{\Delta}}{2a} = \dfrac{5 \pm \sqrt{209}}{2} \rightarrow \begin{cases}\mathsf{x' = \dfrac{5 + \sqrt{209}}{2}}\\\\\mathsf{x'' = \dfrac{5 - \sqrt{209}}{2}}\end{cases}}

\mathsf{S = \left\{\dfrac{5 + \sqrt{209}}{2}\right\}}

Perguntas interessantes