Matemática, perguntado por kellybiastar9754, 1 ano atrás

Questão n° 25O número de triplas (a,b,c) de números inteiros positivos menores ou iguais a 50 tais que a, b e c, nesta ordem, estejam em progressão geométrica éa)22b)23c)27d)30e)35

Anexos:

Soluções para a tarefa

Respondido por ghalas
0

Olá,


Temos três casos:


1) a, b, c podem estar em progressão geométrica constante.

2) a, b, c podem estar em progressão geométrica crescente.

3) a, b, c podem estar em progressão geométrica decrescente.


-----------------------------------------------------------------------------------------------------------------


1) a, b, c em progressão geométrica constante, ou seja, com razão 1.


Nesse caso temos as progressões do tipo (1, 1, 1); (2, 2, 2); ...; (49, 49, 49); (50, 50, 50).


Total de 50 progressões geométricas.


-----------------------------------------------------------------------------------------------------------------


2) a, b, c em progressão geométrica crescente, com razão inteira.


r = 2: 12 progressões.

(1, 2, 4); (2, 4, 6); (3, 6, 12); (4, 8, 16); (5, 10, 15); (6, 12, 24);

(7, 14, 28); (8, 16, 32); (9, 18, 36); (10, 20, 40); (11, 22, 44); (12, 24, 28).


r = 3: 5 progressões.

(1, 3, 9); (2, 6, 18); (3, 9, 27); (4, 12, 36); (5, 15, 45).


r = 4: 3 progressões.

(1, 4, 16); (2, 8, 32); (3, 12, 48)


r = 5: 2 progressões.

(1, 5, 25); (2, 10, 50);


r = 6: 1 progressão.

(1, 6, 36)


r = 7: 1 progressão.

(1, 7, 49)


Total de 24 progressões geométricas.


-----------------------------------------------------------------------------------------------------------------


3) a, b, c em progressão geométrica decrescente, ou seja, com razão racional.


Nesse caso, teremos as 24 progressões do item 2, porém começando pelo maior número. Exemplo: (4, 2, 1), ...


Total de 24 progressões geométricas.


-----------------------------------------------------------------------------------------------------------------


Total de 50 + 24 + 24 = 98 progressões geométricas.


Observe que nenhuma alternativa possui essa opção. Dessa forma, acredito que o enunciado deveria ter especificado melhor as condições do problema.


Espero ter ajudado. Abraços =D

Perguntas interessantes