quantos múltiplos de 5 existem entre 1 e 101
Soluções para a tarefa
Respondido por
3
a1 = 5
an = 100
r = 5
n = ?
an = a1 + (n-1).r
100 = 5 + (n-1).5
100 = 5 + 5n - 5
100 = 5n
n = 100/5
n = 20
an = 100
r = 5
n = ?
an = a1 + (n-1).r
100 = 5 + (n-1).5
100 = 5 + 5n - 5
100 = 5n
n = 100/5
n = 20
Respondido por
0
Existem no total 20 múltiplos de 5 entre o 1 a 100
Progressão aritmética
Quando temos uma relação onde o próximo termo equivale à soma dos anteriores
Como resolvemos ?
Primeiro: Considerando uma P.A
Seguindo os dados do enunciado:
- Considerando que temos uma sequência de n termos
- Em que o primeiro é o valor 5 e o último termo é o valor 100
Segundo: Substituindo na fórmula
Aplicando conforme a fórmula, dada por:
Onde, temos a relação
- n = termo da sequência
- r = razão da sequência
- a₁ = primeiro termo
- a = termo de n
Substituindo os valores do último termo da sequência
- n = ?
- r = 5
- a₁ = 5
- a = 100
Portanto, existem no total 20 múltiplos de 5 entre o 1 a 100
Veja essa e outras questões sobre Progressão aritmética em:
https://brainly.com.br/tarefa/6535552
#SPJ2
Perguntas interessantes
Matemática,
10 meses atrás
História,
10 meses atrás
Física,
10 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás