Quantas vértices tem um poliedro convexo que tem 3 faces triangulares , 1 face quadrangular , 1 face pentagonal e 2 faces hexagonais .
Soluções para a tarefa
Respondido por
5
V+F = A+2
Assim
V+F = A'+2
aonde A' = 2A e usamos isto pois vamos contar o número de arestas A em dobro, já que um polígono (uma face) faz fronteira com a outra e dividem ambas a MESMA aresta. Assim
V+F = A/2+2
Agora o número de faces F é dado por:
F = 3+1+1+2 = 7, vide enunciado.
O número de arestas:
triângulo tem 3 lados que serão as arestas, quadrado 4, e assim por diante. Logo:
A = 3*3+1*4+1*5+2*6=9+4+5+12=30
Assim
V+F = A/2+2
V+(7) = (30)/2 +2
V = 10
Portanto, tem 10 vértices.
Assim
V+F = A'+2
aonde A' = 2A e usamos isto pois vamos contar o número de arestas A em dobro, já que um polígono (uma face) faz fronteira com a outra e dividem ambas a MESMA aresta. Assim
V+F = A/2+2
Agora o número de faces F é dado por:
F = 3+1+1+2 = 7, vide enunciado.
O número de arestas:
triângulo tem 3 lados que serão as arestas, quadrado 4, e assim por diante. Logo:
A = 3*3+1*4+1*5+2*6=9+4+5+12=30
Assim
V+F = A/2+2
V+(7) = (30)/2 +2
V = 10
Portanto, tem 10 vértices.
laazarocoelho:
obrigado
Perguntas interessantes
Física,
9 meses atrás
Artes,
9 meses atrás
Biologia,
9 meses atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás