Matemática, perguntado por catharineavril, 1 ano atrás

Quais são os seis primeiros termos da PG em que a1= x²(com x diferente de 0) e q= y sobre x³?

Soluções para a tarefa

Respondido por Usuário anônimo
107

 Catharine,

bom dia!

 

 Sabe-se que a_n = a_1 \times q^{n - 1}, então, para encontrar o 2º termo devemos substituir n por 2, veja:

 

a_n = a_1 \times q^{n - 1} \\ a_2 = a_1 \times q^{2 - 1} \\ \boxed{a_2 = a_1 \times q} \\ a_2 = x^2 \times \frac{y}{x^3} \\ a_2 = \frac{x^2y}{x^3} \\ \boxed{\boxed{a_2 = \frac{y}{x}}} 

 

 Para encontrarmo o 3º termo, o raciocínio é análogo: basta substituir n por 3.

 

a_n = a_1 \times q^{n - 1} \\ a_3 = a_1 \times q^{3 - 1} \\ \boxed{a_3 = a_1 \times q^2} \\ a_3 = x^2 \times (\frac{y}{x^3})^2 \\ a_3 = x^2 \times \frac{y^2}{x^6} \\ a_3 = \frac{x^2y^2}{x^6} \\ \boxed{\boxed{a_3 = \frac{y^2}{x^4}}}

 

 4º termo:

 

\boxed{a_4 = a_1 \times q^3} \\ a_4 = x^2 \times (\frac{y}{x^3})^3 \\ a_4 = x^2 \times \frac{y^3}{x^9} \\ a_4 = \frac{x^2y^3}{x^9} \\ \boxed{\boxed{a_3 = \frac{y^2}{x^7}}}

 

5º termo:

 

\boxed{a_5 = a_1 \times q^4} \\ a_5 = x^2 \times (\frac{y}{x^3})^4 \\ a_5 = x^2 \times \frac{y^4}{x^{12}} \\ a_5 = \frac{x^2y^4}{x^{12}} \\ \boxed{\boxed{a_5 = \frac{y^2}{x^{10}}}}

 

6º termo:

 

\boxed{a_6 = a_1 \times q^5} \\ a_6 = x^2 \times (\frac{y}{x^3})^5 \\ a_6 = x^2 \times \frac{y^5}{x^{15}} \\ a_6 = \frac{x^2y^5}{x^{15}} \\ \boxed{\boxed{a_6 = \frac{y^2}{x^{13}}}}

 

 

Perguntas interessantes