Matemática, perguntado por christorosi43, 11 meses atrás

para a sentença abaixo de torne verdadeira qual deve ser o valor de a?
ª√64=2?

Soluções para a tarefa

Respondido por Nasgovaskov
8

Explicação passo a passo:

\sf{\sqrt[a]{64} = 2}

\sf{{64}^\frac{1}{a} = 2}

\sf{(2^6)^{\frac{1}{a}} = 2}

\sf{2^{\frac{6 \cdot 1}{a}} = 2}

\sf{2^{\frac{6}{a}} = 2}

\sf{2^{\frac{6}{a}} = 2^1}

\sf{\backslash\!\!\!\!\ 2^{\frac{6}{a}} = \backslash\!\!\!\!\ 2^1}

\sf{\dfrac{6}{a} = 1}

\sf{6 = a \cdot 1}

\sf{6 = a}

\red{\boxed{\sf{a = 6}}}

Respondido por matheusTMF
5

Resposta:

a = 6

vou usar uma propriedade de raiz q me permite transformar indice em expoente, sendo este o inverso do indice

 \sqrt[a]{64}  \:  \:  \ = 64  ^{ \frac{1}{a} }   \:  =  \:  \: 2

colocando em bases iguais

  ({{2}^{6 } })^{ \frac{1}{a} }  = 2

multiplicando os expoentes temos

 {2}^{ \frac{6}{a} }  = 2 \\  \\  \frac{6}{a}  = \: 1 \\  \\ a = 6

Perguntas interessantes