Física, perguntado por du0202, 7 meses atrás

Nos rolamentos de automóveis, são utilizadas algumas pequenas esferas de aço para facilitar o movimento e minimizar desgastes, conforme representa a figura abaixo. Após certo tempo de funcionamento, a temperatura das esferas aumenta em 300°C devido ao atrito.
Considere que o volume de uma esfera contida em um rolamento é 1mm3 e que o coeficiente de
dilatação linear do aço é 11106 C1. Nas
condições propostas acima, conclui-se que a variação do volume e o volume de cada esfera, após o aquecimento em virtude do aquecimento por atrito, são, respectivamente:
1,0099mm3 e 0,0099mm3.
0,0066mm3 e 1,0066mm3.
33 0,0099mm e1,0099mm.
1,0066mm3 e 0,0066mm3. nenhuma das alternativas anteriores.

Soluções para a tarefa

Respondido por GabriellaNerd060406
18

Resposta:

A dilatação volumétrica é:

ΔV = V_{0} (3a) Δθ = 1 . 3 . 11 . 10^{-6} . 300 = 9,9 . 10^{-3}

ΔV = 0,0099 mm^{3}

O volume final é:

V = V_{0} + ΔV = 1 + 0,0099

V = 1,0099 mm^{3}


vaiesdudarpoha: qual é a letra??
vaiesdudarpoha: a ou c
lexandrds: Letra A
lexandrds: Nada
laracarvalho1235: Pq fica 10*-3?
Respondido por lexandrds
2

Resposta:A dilatação volumétrica é:

ΔV =  (3a) Δθ = 1 . 3 . 11 .  . 300 = 9,9 .  

ΔV = 0,0099  

O volume final é:

V =  + ΔV = 1 + 0,0099

V = 1,0099

Explicação:

Letra A

\\

Perguntas interessantes