Me ajudem por favor!
Anexos:

Soluções para a tarefa
Respondido por
1
1 -
![log_{125}625 ===\ \textgreater \ 125^x = 625 \\ (5^3)^x = 5^4 \\ \\ 3x = 4 \\ \\ x = \frac{4}{3} \\ \\ log \sqrt[4]{1000} ==\ \textgreater \ log10^{ \frac{3}{4}} ==\ \textgreater \ \frac{3}{4}.log10 = \frac{3}{4} \\ \\ log_{81} \frac{1}{243} ==\ \textgreater \ log_{3^4} 243^{-1} ==\ \textgreater \ \frac{1}{4}.log_3 (3^5)^{-1} \\ \\ \frac{1}{4}.log_3 3^{-5} ==\ \textgreater \ \frac{-5}{4}.log_33 \\ \\ \frac{-5}{4} log_{125}625 ===\ \textgreater \ 125^x = 625 \\ (5^3)^x = 5^4 \\ \\ 3x = 4 \\ \\ x = \frac{4}{3} \\ \\ log \sqrt[4]{1000} ==\ \textgreater \ log10^{ \frac{3}{4}} ==\ \textgreater \ \frac{3}{4}.log10 = \frac{3}{4} \\ \\ log_{81} \frac{1}{243} ==\ \textgreater \ log_{3^4} 243^{-1} ==\ \textgreater \ \frac{1}{4}.log_3 (3^5)^{-1} \\ \\ \frac{1}{4}.log_3 3^{-5} ==\ \textgreater \ \frac{-5}{4}.log_33 \\ \\ \frac{-5}{4}](https://tex.z-dn.net/?f=log_%7B125%7D625+%3D%3D%3D%5C+%5Ctextgreater+%5C++125%5Ex+%3D+625+%5C%5C+%285%5E3%29%5Ex+%3D+5%5E4+%5C%5C+%5C%5C+3x+%3D+4+%5C%5C+%5C%5C+x+%3D+%5Cfrac%7B4%7D%7B3%7D+%5C%5C+%5C%5C+log+%5Csqrt%5B4%5D%7B1000%7D+%3D%3D%5C+%5Ctextgreater+%5C++log10%5E%7B+%5Cfrac%7B3%7D%7B4%7D%7D+%3D%3D%5C+%5Ctextgreater+%5C++%5Cfrac%7B3%7D%7B4%7D.log10+%3D+%5Cfrac%7B3%7D%7B4%7D+%5C%5C+%5C%5C+log_%7B81%7D+%5Cfrac%7B1%7D%7B243%7D+%3D%3D%5C+%5Ctextgreater+%5C++log_%7B3%5E4%7D+243%5E%7B-1%7D+%3D%3D%5C+%5Ctextgreater+%5C++%5Cfrac%7B1%7D%7B4%7D.log_3+%283%5E5%29%5E%7B-1%7D+%5C%5C+%5C%5C+%5Cfrac%7B1%7D%7B4%7D.log_3+3%5E%7B-5%7D+%3D%3D%5C+%5Ctextgreater+%5C++%5Cfrac%7B-5%7D%7B4%7D.log_33+%5C%5C+%5C%5C++%5Cfrac%7B-5%7D%7B4%7D)

2 -


2 -
Perguntas interessantes
Geografia,
11 meses atrás
Matemática,
11 meses atrás
História,
11 meses atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás