Matemática, perguntado por caroldfp, 11 meses atrás

Me ajudem por favor!

Anexos:

Soluções para a tarefa

Respondido por Broonj2
1
1 -

log_{125}625 ===\ \textgreater \  125^x = 625 \\ (5^3)^x = 5^4 \\ \\ 3x = 4 \\ \\ x = \frac{4}{3} \\ \\ log \sqrt[4]{1000} ==\ \textgreater \  log10^{ \frac{3}{4}} ==\ \textgreater \  \frac{3}{4}.log10 = \frac{3}{4} \\ \\ log_{81} \frac{1}{243} ==\ \textgreater \  log_{3^4} 243^{-1} ==\ \textgreater \  \frac{1}{4}.log_3 (3^5)^{-1} \\ \\ \frac{1}{4}.log_3 3^{-5} ==\ \textgreater \  \frac{-5}{4}.log_33 \\ \\  \frac{-5}{4}


log_{ \frac{27}{8} } \frac{64}{729} ===\ \textgreater \  (\frac{27}{8})^x = \frac{64}{729} \\ \\ (\frac{3^3}{2^3})^x = \frac{2^6}{3^6} ==\ \textgreater \  (\frac{3}{2})^{3x} = (\frac{3}{2})^-6 \\ \\ 3x= - 6 \\ x = -2

2 - 

log_610 = log_6(2.5) = log_62 + log_65 ==\ \textgreater \  0,386 + 0,898 = 1,284 \\ \\ log_25 ==\ \textgreater \  \frac{log_65}{log_62} = \frac{0,898}{0,386} \approx 2,3 \\ \\ log_62,5 ==\ \textgreater \  log_6 \frac{25}{10} ==\ \textgreater \  log_625 - log_610 \\ \\ log_65^2 - 1,284 ==\ \textgreater \  2.log_65 - 1,284 \\ 2.0,898 - 1,284 = 0,512 \\ \\ log_620 ==\ \textgreater \  log_6(2^2.5) ==\ \textgreater \  log_62^2 + log_65 \\ \\ 2.log_62 + 0,898 ==\ \textgreater \  2.0,386 + 0,898 = 1,67


log_6\sqrt{5} ==\ \textgreater \  log_65^{ \frac{1}{2}} ==\ \textgreater \  \frac{1}{2}.log_65 \\ \\ \frac{1}{2}.0,898 = 0,449
Perguntas interessantes