Me ajudem nessa questão,pfv!
Uma operadora A de telefonia cobra um valor fixo mensal de 40,00 reais por um serviço de assinatura
acrescido de 0,12 reais por cada minuto de ligação e uma outra operadora B, do mesmo servoço, cobra 60,00 reais de um valor fixo mensal, mais 0,08 reais por minuto de ligação. Determine:
1) o tempo de ligação para o cliente da operadora A tenha vantagem financeira em relação ao cliente da operadora B.
Soluções para a tarefa
Respondido por
13
Oi!
Vamos montar a função custo (c) em função do tempo (t) de ligação para cada uma das operadoras:
Custo de A
cA(t)= 40 + 0,12t (R$)
Custo de B
cB(t) = 60 + 0,08t
Como queremos saber qual é o tempo em que o cliente de A "ganha" R$ contra um cliente de B, temos que resolver a seguinte inequação:
cA<cB
40 + 0,12t < 60 + 0,08t
0,12t - 0,08t <60-40
0,04t<20
t < 20/0,04
t < 500 minutos
Ou seja, para o cliente de A ter vantagem contra B (isso com os 2 usando o mesmo tempo de ligação) ele pode ligar até 500 minutos
com t = 500 o custo se igualam.
Vamos montar a função custo (c) em função do tempo (t) de ligação para cada uma das operadoras:
Custo de A
cA(t)= 40 + 0,12t (R$)
Custo de B
cB(t) = 60 + 0,08t
Como queremos saber qual é o tempo em que o cliente de A "ganha" R$ contra um cliente de B, temos que resolver a seguinte inequação:
cA<cB
40 + 0,12t < 60 + 0,08t
0,12t - 0,08t <60-40
0,04t<20
t < 20/0,04
t < 500 minutos
Ou seja, para o cliente de A ter vantagem contra B (isso com os 2 usando o mesmo tempo de ligação) ele pode ligar até 500 minutos
com t = 500 o custo se igualam.
Perguntas interessantes
Matemática,
10 meses atrás
Física,
10 meses atrás
Informática,
10 meses atrás
Física,
1 ano atrás
Física,
1 ano atrás
Biologia,
1 ano atrás