Matemática, perguntado por Leticia1523, 1 ano atrás

Matrizes (Matriz transposta) Me ajudem por favor ! 55 pontosSendo = (A.B)^t <br /><br />
Sendo = A^t . B^t  \left[\begin{array}{ccc}3&amp;2&amp;\\5&amp;1&amp;\\&amp;&amp;\end{array}\right] <br />\left[\begin{array}{ccc}3&amp;-1&amp;\\2&amp;0&amp;\\&amp;&amp;\end{array}\right]


Leticia1523: Desculpe esqueci de por que : A=3,2,5,1 e B=3,-1,2,0

Soluções para a tarefa

Respondido por acidbutter
1
matriz transposta: basta inverter i com j (trocar linhas pelas colunas):
A=  \left[\begin{array}{cc}a&amp;b\\c&amp;d\end{array}\right] \\\\A^t=\left[\begin{array}{cc}a&amp;c\\b&amp;d\end{array}\right]
tendo:
A=\left[\begin{array}{cc}3&amp;2\\5&amp;1\end{array}\right] \\\\B=\left[\begin{array}{cc}3&amp;-1\\2&amp;0\end{array}\right]
então:
a)
(A\cdot B)^t
\left(\left[\begin{array}{cc}3&amp;2\\5&amp;1\end{array}\right] \cdot\left[\begin{array}{cc}3&amp;-1\\2&amp;0\end{array}\right]\right)^t =\left[\begin{array}{cc}([3\cdot3]+[2\cdot2])&amp;([3\cdot-1]+[2\cdot0])\\([5\cdot3]+[1\cdot2])&amp;([5\cdot-1]+[1\cdot0])\end{array}\right]^t=\\\\\left[\begin{array}{cc}(9+4)&amp;(-3+0)\\(15+2)&amp;(-5+0)\end{array}\right]^t=\left[\begin{array}{cc}13&amp;-3\\17&amp;-5\end{array}\right]^t=\boxed{(A\cdot B)^t=\left[\begin{array}{cc}13&amp;17\\-3&amp;-5\end{array}\right]}

Perguntas interessantes