Matriz URGENTE ! 10 PONTOS FACIL
Anexos:

Soluções para a tarefa
Respondido por
1
Primeiramente, calculamos o determinante de A:
Usando a regra de Sarrus, obtemos:
det A = [(1 . 1 . 1) + (2 . 2 . 2) + (3 . 0 . (- 3))] - [(3 . 1 . 2) + (1 . 2 . (-3)) + (2 . 0 . 1)]
det A = [1 + 8 + 0] - [6 - 6 + 0]
det A = [9] - [0]
det A = 9 - 0
det A = 9
Encontrando o determinante da inversa de A:
Inversa de det A =
= 
Logo o inverso de 9 é
Resposta:
det (
) = 1/9
Usando a regra de Sarrus, obtemos:
det A = [(1 . 1 . 1) + (2 . 2 . 2) + (3 . 0 . (- 3))] - [(3 . 1 . 2) + (1 . 2 . (-3)) + (2 . 0 . 1)]
det A = [1 + 8 + 0] - [6 - 6 + 0]
det A = [9] - [0]
det A = 9 - 0
det A = 9
Encontrando o determinante da inversa de A:
Inversa de det A =
Logo o inverso de 9 é
Resposta:
det (
EvertonPrado10:
Muito obrigado, que Deus te abençoe.
Perguntas interessantes