interpole quatro meios geometricos entre -4 e 972
Soluções para a tarefa
Respondido por
1
a_1 = - 4
a_n = 972
n = 4 + 2 ===> n = 6
q = ?
![a_n=a_1\cdot\,q^{n-1}\\\\972=-4\cdot\,q^5\\\\q^5=-243\\\\q^5=(-3)^5\\\\\boxed{q=-3} a_n=a_1\cdot\,q^{n-1}\\\\972=-4\cdot\,q^5\\\\q^5=-243\\\\q^5=(-3)^5\\\\\boxed{q=-3}](https://tex.z-dn.net/?f=a_n%3Da_1%5Ccdot%5C%2Cq%5E%7Bn-1%7D%5C%5C%5C%5C972%3D-4%5Ccdot%5C%2Cq%5E5%5C%5C%5C%5Cq%5E5%3D-243%5C%5C%5C%5Cq%5E5%3D%28-3%29%5E5%5C%5C%5C%5C%5Cboxed%7Bq%3D-3%7D)
a_2 = a_1 . q =====> a_2 = (- 4) . (- 3) =====> a_2 = 12
a_3 = a_2 . q =====> a_3 = (12) . (- 3) =====> a_3 = - 36
a_4 = a_3 . q =====> a_4 = (- 36) . (- 3) =====> a_4 = 108
a_5 = a_4 . q =====> a_5 = (108) . (- 3) =====> a_5 = - 324
a_n = 972
n = 4 + 2 ===> n = 6
q = ?
a_2 = a_1 . q =====> a_2 = (- 4) . (- 3) =====> a_2 = 12
a_3 = a_2 . q =====> a_3 = (12) . (- 3) =====> a_3 = - 36
a_4 = a_3 . q =====> a_4 = (- 36) . (- 3) =====> a_4 = 108
a_5 = a_4 . q =====> a_5 = (108) . (- 3) =====> a_5 = - 324
Perguntas interessantes