gente me ajude, minha professora passou um exercicio sem explicar e eu não consigo fazer
Sendo a função f(x) = ax+b com a b£R e a diferente de 0, determine os valores de a e b de modo que f(3)=4 e f(-1)=2
Soluções para a tarefa
Respondido por
0
temos que f(x) = ax+b
queremos os valores de a e b
temos que f(3) = 4 e f(-1)=2
Veja que o 3 e o -1 estão no lugar do x em f(x), então esses são os valores de x na equação. E 4 e 2 são os resultados da função f(x) quando temos os valores de x correspondentes.
Então vejamos:
f(x) = ax+b e f(3) = 4
4 = a.3+b Veja que quando x = 3 o resultado é igual a 4
e tambem
quando x = -1 o resultado é igual a 2
2 = a.(-1)+b
Assim, temos um sistema, porque a e b são iguais nas duas funções.
4 = a3+b
2 = a(-1)+b Vou colocar em ordem
3a + b = 4
-1a+b = 2
Resolvendo o sistema por substituição:
na 1ª:
3a + b = 4
b= 4-3a ==> vamos substituir o valor de b aqui no b da 2ª
-a + b = 2
-a + 4 - 3a = 2
-4a = 2 - 4
-4a = -2
a = -2/-4
a = 1/2
agora que temos o valor de a, podemos calcular o valor de b
-a + b = 2
-1/2 + b = 2
b = 2 +1/2
b = 5/2
Pronto, a = 1/2 e b = 5/2
A função ficará assim:
queremos os valores de a e b
temos que f(3) = 4 e f(-1)=2
Veja que o 3 e o -1 estão no lugar do x em f(x), então esses são os valores de x na equação. E 4 e 2 são os resultados da função f(x) quando temos os valores de x correspondentes.
Então vejamos:
f(x) = ax+b e f(3) = 4
4 = a.3+b Veja que quando x = 3 o resultado é igual a 4
e tambem
quando x = -1 o resultado é igual a 2
2 = a.(-1)+b
Assim, temos um sistema, porque a e b são iguais nas duas funções.
4 = a3+b
2 = a(-1)+b Vou colocar em ordem
3a + b = 4
-1a+b = 2
Resolvendo o sistema por substituição:
na 1ª:
3a + b = 4
b= 4-3a ==> vamos substituir o valor de b aqui no b da 2ª
-a + b = 2
-a + 4 - 3a = 2
-4a = 2 - 4
-4a = -2
a = -2/-4
a = 1/2
agora que temos o valor de a, podemos calcular o valor de b
-a + b = 2
-1/2 + b = 2
b = 2 +1/2
b = 5/2
Pronto, a = 1/2 e b = 5/2
A função ficará assim:
Perguntas interessantes
Matemática,
9 meses atrás
Português,
9 meses atrás
Direito,
9 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás