(FUVEST 2010)Maria deve criar uma senha de 4 dígitos para sua conta bancária. Nessa senha, somente os algarismos 1,2,3,4,5 podem ser usados e um mesmo algarismo pode aparecer mais de uma vez. Contudo, supersticiosa, Maria não quer que sua senha contenha o número 13, isto é, o algarismo 1 seguido imediatamente pelo algarismo 3. De quantas maneiras distintas Maria pode escolher sua senha?A) 551B) 552C) 553D) 554E) 555
Soluções para a tarefa
Antes de tudo, vamos separar os valores que podem aparecer: número 1 até 5 em quatro espaços sem repetição, ou seja, cinco elementos em quatro dígitos.
Calcularemos, de início, o número de combinações possíveis que os números possíveis mostram, independente da superstição de Maria:
Agora basta calcular as possibilidades em que o número 1 e 3 saem em sequência, ou seja, são três (13XX, X13X, XX13). Dessa maneira temos que [tex](5^{2} * 3) = 75. Devemos, no entanto, subtrair uma possibilidade, pois há a opção de escolher a senha 1313 (o que seria terrível para Maria!), então temos 74.
Por fim: 625 - 74 = 551. Temos que a alternativa A é a correta.
A senha deve conter 4 dígitos e os dígitos podem se repetir.
Temos a disposição de escolha os números 1,2,3,4 e 5.
Porém Maria não quer que sua senha apareça o número 13 (1+3) .
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
1º Opção de senha restrita = 13ØØ
2º Opção de senha restrita = Ø13Ø
3º Opção de senha restrita =ØØ13
São 3 opções que não desejamos para a senha de Maria.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Agora iremos calcular o total de possibilidades ( como se não existisse a restrição de senha) .
1º Digito de escolha = 5 Possibilidades
2º Digito de escolha = 5 Possibilidades
3º Digito de escolha = 5 Possibilidades
4º Digito de escolha = 5 Possibilidades
5⁴=625 Possibilidades de escolha destas senhas.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
I) Agora fixando o 1 e o 3 nessa ordem( 1,3,Ø,Ø) , vamos calcular o total de possibilidades existentes.
1º Digito de escolha = 1 Possibilidade ( o número 1 )
2º Digito de escolha = 1 Possibilidade ( o número 3 )
3º Digito de escolha = 5 Possibilidades
4º Digito de escolha = 5 Possibilidades
5² = 25 Possibilidades.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
II) Agora fixando o 1 e o 3 nessa ordem( Ø,1,3,Ø) , vamos calcular o total de possibilidades existentes.
1º Digito de escolha = 5 Possibilidades
2º Digito de escolha = 1 Possibilidade
3º Digito de escolha = 1 Possibilidade
4º Digito de escolha = 5 Possibilidades
5² = 25 Possibilidades.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
III) Agora fixando o 1 e o 3 nessa ordem( Ø,Ø,1,3) , vamos calcular o total de possibilidades existentes.
1º Digito de escolha = 5 Possibilidades
2º Digito de escolha = 5 Possibilidades
3º Digito de escolha = 1 Possibilidade
4º Digito de escolha = 1 Possibilidade
5² = 25 Possibilidades.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Agora note no I e no III , temos no I 25 opções de senhas começando com 13 e no III também temos 25 opções de senhas terminadas em 13.Como uma das duas já está contidas nas 625 opções diferentes , temos que subtrair um do total das possibilidade I , II e III.
25+25+25 = 75
75-1 = 74.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Agora temos o total de senhas diferentes(625) e o total de senhas em que 1 e 3 são seguidos , como a Maria não quer que esses números apareçam , temos que subtraí-los do total.
625-74 = 551
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Portanto são 551 maneiras distintas que Maria pode escolher a sua senha.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃