Matemática, perguntado por oliveiranathy, 1 ano atrás

[Função] Ajuda na questão 9

Anexos:

Soluções para a tarefa

Respondido por Hopkins
1
 \left \{ {{f(3) = 2} \atop {f(x+3) = f(x).f(3)}} \right.

Vamos igualar f(3)= 2  a f(x+3) = f(x).f(3), assim:

f(3) = f(x+3) = f(x).f(3)
f(0+3) = f(0).f(3) 
f(0+3) = 1*2 (como já sabemos que f(3) = 2, podemos supor que f(0) = 1)
f(0+3) = 2
f(3) = 2 (Veja, que a suposição parece veredicto).

Tendo f(0) = 1 vamos igualar a f(x+3) = f(x).f(3), assim:
f(0) = f(-3+3) = f(-3).f(3)
f(-3+3) = f(-3).2
Se f(-3+3) = f(0) então:
1 = f(-3).2
f(-3) = 1/2

Alternativa c)
Perguntas interessantes