Escreva a PA crescente de 5 termos em que o produto dos extremos, ou seja, do primeiro com o ultimo termo é igual a 9 e a soma dos outros 3 termos é igual a 15.
Soluções para a tarefa
Respondido por
34
Queremos encontrar uma sequência de cinco termos em progressão aritmética
![\left(a_{1},\,a_{2},\,a_{3},\,a_{4},\,a_{5} \right ) \left(a_{1},\,a_{2},\,a_{3},\,a_{4},\,a_{5} \right )](https://tex.z-dn.net/?f=%5Cleft%28a_%7B1%7D%2C%5C%2Ca_%7B2%7D%2C%5C%2Ca_%7B3%7D%2C%5C%2Ca_%7B4%7D%2C%5C%2Ca_%7B5%7D+%5Cright+%29)
de forma que
![\left\{\begin{array}{rcl} a_{1}\cdot a_{5}&=&9\\ a_{2}+a_{3}+a_{4}&=&15 \end{array} \right. \left\{\begin{array}{rcl} a_{1}\cdot a_{5}&=&9\\ a_{2}+a_{3}+a_{4}&=&15 \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Brcl%7D+a_%7B1%7D%5Ccdot+a_%7B5%7D%26amp%3B%3D%26amp%3B9%5C%5C+a_%7B2%7D%2Ba_%7B3%7D%2Ba_%7B4%7D%26amp%3B%3D%26amp%3B15+%5Cend%7Barray%7D+%5Cright.)
Sendo
a razão desta P.A. crescente, devemos ter
![r>0 r>0](https://tex.z-dn.net/?f=r%26gt%3B0)
e podemos escrever
![a_{5}=a_{1}+4r\\ \\ a_{4}=a_{1}+3r\\ \\ a_{3}=a_{1}+2r\\ \\ a_{2}=a_{1}+r a_{5}=a_{1}+4r\\ \\ a_{4}=a_{1}+3r\\ \\ a_{3}=a_{1}+2r\\ \\ a_{2}=a_{1}+r](https://tex.z-dn.net/?f=a_%7B5%7D%3Da_%7B1%7D%2B4r%5C%5C+%5C%5C+a_%7B4%7D%3Da_%7B1%7D%2B3r%5C%5C+%5C%5C+a_%7B3%7D%3Da_%7B1%7D%2B2r%5C%5C+%5C%5C+a_%7B2%7D%3Da_%7B1%7D%2Br)
Substituindo no sistema de equações, temos
![\left\{\begin{array}{rcl} a_{1}\cdot \left(a_{1}+4r \right )&=&9\\ \left(a_{1}+r \right )+\left(a_{1}+2r \right )+\left(a_{1}+3r \right)&=&15 \end{array} \right.\\ \\ \\ \left\{\begin{array}{rcl} a_{1}\cdot \left(a_{1}+4r \right )&=&9\\ 3a_{1}+6r&=&15 \end{array} \right.\\ \\ \\ \left\{\begin{array}{rcl} a_{1}\cdot \left(a_{1}+4r \right )&=&9\\ \left(a_{1}+r \right )+\left(a_{1}+2r \right )+\left(a_{1}+3r \right)&=&15 \end{array} \right.\\ \\ \\ \left\{\begin{array}{rcl} a_{1}\cdot \left(a_{1}+4r \right )&=&9\\ 3a_{1}+6r&=&15 \end{array} \right.\\ \\ \\](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Brcl%7D+a_%7B1%7D%5Ccdot+%5Cleft%28a_%7B1%7D%2B4r+%5Cright+%29%26amp%3B%3D%26amp%3B9%5C%5C+%5Cleft%28a_%7B1%7D%2Br+%5Cright+%29%2B%5Cleft%28a_%7B1%7D%2B2r+%5Cright+%29%2B%5Cleft%28a_%7B1%7D%2B3r+%5Cright%29%26amp%3B%3D%26amp%3B15+%5Cend%7Barray%7D+%5Cright.%5C%5C+%5C%5C+%5C%5C+%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Brcl%7D+a_%7B1%7D%5Ccdot+%5Cleft%28a_%7B1%7D%2B4r+%5Cright+%29%26amp%3B%3D%26amp%3B9%5C%5C+3a_%7B1%7D%2B6r%26amp%3B%3D%26amp%3B15+%5Cend%7Barray%7D+%5Cright.%5C%5C+%5C%5C+%5C%5C)
Isolando
na segunda equação e substituindo na primeira, temos
![3a_{1}+6r=15\\ \\ 6r=15-3a_{1}\\ \\ r=\dfrac{15-3a_{1}}{6}\\ \\ r=\dfrac{\diagup\!\!\!\! 3\cdot \left(5-a_{1} \right )}{\diagup\!\!\!\! 3\cdot 2}\\ \\ r=\dfrac{5-a_{1}}{2}\\ \\ \\ a_{1}\cdot \left(a_{1}+4r \right )=9\\ \\ a_{1}\cdot \left[a_{1}+\diagup\!\!\!\! 4\cdot \left(\dfrac{5-a_{1}}{\diagup\!\!\!\! 2} \right ) \right ]=9\\ \\ a_{1}\cdot \left[a_{1}+2\cdot\left(5-a_{1} \right ) \right ]=9\\ \\ a_{1}\cdot \left[a_{1}+10-2a_{1} \right ]=9\\ \\ a_{1}\cdot \left[10-a_{1} \right ]=9 3a_{1}+6r=15\\ \\ 6r=15-3a_{1}\\ \\ r=\dfrac{15-3a_{1}}{6}\\ \\ r=\dfrac{\diagup\!\!\!\! 3\cdot \left(5-a_{1} \right )}{\diagup\!\!\!\! 3\cdot 2}\\ \\ r=\dfrac{5-a_{1}}{2}\\ \\ \\ a_{1}\cdot \left(a_{1}+4r \right )=9\\ \\ a_{1}\cdot \left[a_{1}+\diagup\!\!\!\! 4\cdot \left(\dfrac{5-a_{1}}{\diagup\!\!\!\! 2} \right ) \right ]=9\\ \\ a_{1}\cdot \left[a_{1}+2\cdot\left(5-a_{1} \right ) \right ]=9\\ \\ a_{1}\cdot \left[a_{1}+10-2a_{1} \right ]=9\\ \\ a_{1}\cdot \left[10-a_{1} \right ]=9](https://tex.z-dn.net/?f=3a_%7B1%7D%2B6r%3D15%5C%5C+%5C%5C+6r%3D15-3a_%7B1%7D%5C%5C+%5C%5C+r%3D%5Cdfrac%7B15-3a_%7B1%7D%7D%7B6%7D%5C%5C+%5C%5C+r%3D%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+3%5Ccdot+%5Cleft%285-a_%7B1%7D+%5Cright+%29%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+3%5Ccdot+2%7D%5C%5C+%5C%5C+r%3D%5Cdfrac%7B5-a_%7B1%7D%7D%7B2%7D%5C%5C+%5C%5C+%5C%5C+a_%7B1%7D%5Ccdot+%5Cleft%28a_%7B1%7D%2B4r+%5Cright+%29%3D9%5C%5C+%5C%5C+a_%7B1%7D%5Ccdot+%5Cleft%5Ba_%7B1%7D%2B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+4%5Ccdot+%5Cleft%28%5Cdfrac%7B5-a_%7B1%7D%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%7D+%5Cright+%29+%5Cright+%5D%3D9%5C%5C+%5C%5C+a_%7B1%7D%5Ccdot+%5Cleft%5Ba_%7B1%7D%2B2%5Ccdot%5Cleft%285-a_%7B1%7D+%5Cright+%29+%5Cright+%5D%3D9%5C%5C+%5C%5C+a_%7B1%7D%5Ccdot+%5Cleft%5Ba_%7B1%7D%2B10-2a_%7B1%7D+%5Cright+%5D%3D9%5C%5C+%5C%5C+a_%7B1%7D%5Ccdot+%5Cleft%5B10-a_%7B1%7D+%5Cright+%5D%3D9)
![a_{1}\cdot \left[10-a_{1} \right ]=9\\ \\ 10a_{1}-a_{1}^{2}=9\\ \\ a_{1}^{2}-10a_{1}+9=0\\ \\ a_{1}^{2}-a_{1}-9a_{1}+9=0\\ \\ a_{1}\cdot \left(a_{1}-1 \right )-9\cdot \left(a_{1}-1 \right )=0\\ \\ \left(a_{1}-1 \right )\cdot \left(a_{1}-9 \right )=0\\ \\ \begin{array}{rcl} a_{1}-1=0&\text{ ou }&a_{1}-9=0\\ \\ a_{1}=1&\text{ ou }&a_{1}=9 \end{array} a_{1}\cdot \left[10-a_{1} \right ]=9\\ \\ 10a_{1}-a_{1}^{2}=9\\ \\ a_{1}^{2}-10a_{1}+9=0\\ \\ a_{1}^{2}-a_{1}-9a_{1}+9=0\\ \\ a_{1}\cdot \left(a_{1}-1 \right )-9\cdot \left(a_{1}-1 \right )=0\\ \\ \left(a_{1}-1 \right )\cdot \left(a_{1}-9 \right )=0\\ \\ \begin{array}{rcl} a_{1}-1=0&\text{ ou }&a_{1}-9=0\\ \\ a_{1}=1&\text{ ou }&a_{1}=9 \end{array}](https://tex.z-dn.net/?f=a_%7B1%7D%5Ccdot+%5Cleft%5B10-a_%7B1%7D+%5Cright+%5D%3D9%5C%5C+%5C%5C+10a_%7B1%7D-a_%7B1%7D%5E%7B2%7D%3D9%5C%5C+%5C%5C+a_%7B1%7D%5E%7B2%7D-10a_%7B1%7D%2B9%3D0%5C%5C+%5C%5C+a_%7B1%7D%5E%7B2%7D-a_%7B1%7D-9a_%7B1%7D%2B9%3D0%5C%5C+%5C%5C+a_%7B1%7D%5Ccdot+%5Cleft%28a_%7B1%7D-1+%5Cright+%29-9%5Ccdot+%5Cleft%28a_%7B1%7D-1+%5Cright+%29%3D0%5C%5C+%5C%5C+%5Cleft%28a_%7B1%7D-1+%5Cright+%29%5Ccdot+%5Cleft%28a_%7B1%7D-9+%5Cright+%29%3D0%5C%5C+%5C%5C+%5Cbegin%7Barray%7D%7Brcl%7D+a_%7B1%7D-1%3D0%26amp%3B%5Ctext%7B+ou+%7D%26amp%3Ba_%7B1%7D-9%3D0%5C%5C+%5C%5C+a_%7B1%7D%3D1%26amp%3B%5Ctext%7B+ou+%7D%26amp%3Ba_%7B1%7D%3D9+%5Cend%7Barray%7D)
Como a P.A. é crescente, devemos verificar para qual dos dois valores acima, a razão
é positiva:
Para
, temos
![r=\dfrac{5-a_{1}}{2}\\ \\ r=\dfrac{5-1}{2}\\ \\ r=\dfrac{4}{2}\\ \\ r=2>0 r=\dfrac{5-a_{1}}{2}\\ \\ r=\dfrac{5-1}{2}\\ \\ r=\dfrac{4}{2}\\ \\ r=2>0](https://tex.z-dn.net/?f=r%3D%5Cdfrac%7B5-a_%7B1%7D%7D%7B2%7D%5C%5C+%5C%5C+r%3D%5Cdfrac%7B5-1%7D%7B2%7D%5C%5C+%5C%5C+r%3D%5Cdfrac%7B4%7D%7B2%7D%5C%5C+%5C%5C+r%3D2%26gt%3B0)
Para
, temos
![r=\dfrac{5-a_{1}}{2}\\ \\ r=\dfrac{5-9}{2}\\ \\ r=\dfrac{-4}{2}\\ \\ r=-2<0\;\;\text{(n\~{a}o serve)} r=\dfrac{5-a_{1}}{2}\\ \\ r=\dfrac{5-9}{2}\\ \\ r=\dfrac{-4}{2}\\ \\ r=-2<0\;\;\text{(n\~{a}o serve)}](https://tex.z-dn.net/?f=r%3D%5Cdfrac%7B5-a_%7B1%7D%7D%7B2%7D%5C%5C+%5C%5C+r%3D%5Cdfrac%7B5-9%7D%7B2%7D%5C%5C+%5C%5C+r%3D%5Cdfrac%7B-4%7D%7B2%7D%5C%5C+%5C%5C+r%3D-2%26lt%3B0%5C%3B%5C%3B%5Ctext%7B%28n%5C%7E%7Ba%7Do+serve%29%7D)
Logo, o primeiro termo é
e a razão é
.
Finalmente, a progressão procurada é
![\left(a_{1},\,a_{2},\,a_{3},\,a_{4},\,a_{5} \right )\\ \\ \left(1,\;1+2,\;1+2\cdot 2,\;1+3\cdot 2,\;1+4\cdot 2 \right )\\ \\ \left(1,\,3,\,5,\,7,\,9 \right) \left(a_{1},\,a_{2},\,a_{3},\,a_{4},\,a_{5} \right )\\ \\ \left(1,\;1+2,\;1+2\cdot 2,\;1+3\cdot 2,\;1+4\cdot 2 \right )\\ \\ \left(1,\,3,\,5,\,7,\,9 \right)](https://tex.z-dn.net/?f=%5Cleft%28a_%7B1%7D%2C%5C%2Ca_%7B2%7D%2C%5C%2Ca_%7B3%7D%2C%5C%2Ca_%7B4%7D%2C%5C%2Ca_%7B5%7D+%5Cright+%29%5C%5C+%5C%5C+%5Cleft%281%2C%5C%3B1%2B2%2C%5C%3B1%2B2%5Ccdot+2%2C%5C%3B1%2B3%5Ccdot+2%2C%5C%3B1%2B4%5Ccdot+2+%5Cright+%29%5C%5C+%5C%5C+%5Cleft%281%2C%5C%2C3%2C%5C%2C5%2C%5C%2C7%2C%5C%2C9+%5Cright%29)
de forma que
Sendo
e podemos escrever
Substituindo no sistema de equações, temos
Isolando
Como a P.A. é crescente, devemos verificar para qual dos dois valores acima, a razão
Logo, o primeiro termo é
Finalmente, a progressão procurada é
Respondido por
14
a1*a5 = 9
a2 + a3 + a4 = 15
Numa PA
an = a1 + (n - 1).r
Na PA em estudo
a1 = a1
a5 = a1 + (5 - 1).r = a1 + 4r
a1*(a1 + 4r) = 9
a1^2 + 4a1r = 9 (1)
a2 = a1 + r
a3 = a1 + 2r
a4 = a1 + 3r
a2 + a3 + a4 = a1 + r + a1 + 2r + a1 + 3r = 15
3a1 + 6r = 15
a1 + 2r = 5 (2)
Resolvendo o sistema (1) - (2)
De (2)
a1 = 5 - 2r
a1 em (1)
(5 - 2r)^2 + 4(5 - 2r).r = 9
25 - 20r + 4r^2 + 20r - 8r^2 = 9
25 - 9 - 4r^2 = 0
16 - 4r^2 = 0
16 = 4r^2
r^2 = 4
r = +/- 2
Sendo a PA cresecente
r = 2
r em (2)
a1 + 2(2) = 5
a1 = 5 - 4
a1 = 1
PA = { 1, 3, 5, 7, 9 } RESULTADO FINAL
Perguntas interessantes
Matemática,
1 ano atrás
Pedagogia,
1 ano atrás
História,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Administração,
1 ano atrás