Encontre o limites trigonométricos de sen3x/2x quando x tende a 0
Soluções para a tarefa
Respondido por
2
im senx.sen3x.sen5x / tan2x.tan4x.tan6x
x -> 0
Lim (senx/x).(sen3x/3x).(sen5x/5x).x.3x.5x / (tan2x/2x).(tan4x/4x). (tan6x/6x).2x.4x.6x
x -> 0
We know this :
Lim senx/x = 1
x -> 0
Lim sen3x/3x = 1
x -> 0
Lim sen5x/5x = 1
x -> 0
Lim tan2x/2x = 1
x -> 0
Lim tan4x/4x = 1
x -> 0
Lim tan6x/6x = 1
x -> 0
So that :
Lim x.3x.5x / 2x.4x.6x
x -> 0
= 1.3.5 / 2.4.6
= 5/16
x -> 0
Lim (senx/x).(sen3x/3x).(sen5x/5x).x.3x.5x / (tan2x/2x).(tan4x/4x). (tan6x/6x).2x.4x.6x
x -> 0
We know this :
Lim senx/x = 1
x -> 0
Lim sen3x/3x = 1
x -> 0
Lim sen5x/5x = 1
x -> 0
Lim tan2x/2x = 1
x -> 0
Lim tan4x/4x = 1
x -> 0
Lim tan6x/6x = 1
x -> 0
So that :
Lim x.3x.5x / 2x.4x.6x
x -> 0
= 1.3.5 / 2.4.6
= 5/16
Anexos:
![](https://pt-static.z-dn.net/files/d06/8690de775dfba626b0cf9750cfcaacf2.png)
Respondido por
0
Olá,
![lim_{x - > 0}( \frac{ \sin(3x) }{2x} ) lim_{x - > 0}( \frac{ \sin(3x) }{2x} )](https://tex.z-dn.net/?f=+lim_%7Bx+-+%26gt%3B+0%7D%28+%5Cfrac%7B+%5Csin%283x%29+%7D%7B2x%7D+%29+)
Simplifique usando:
![lim_{x - > a}(c \times f(x)) = c \times lim_{x - > af(x)} lim_{x - > a}(c \times f(x)) = c \times lim_{x - > af(x)}](https://tex.z-dn.net/?f=+lim_%7Bx+-+%26gt%3B+a%7D%28c+%5Ctimes+f%28x%29%29+%3D+c+%5Ctimes+lim_%7Bx+-+%26gt%3B+af%28x%29%7D)
Daí, obtemos:
![\frac{1}{2} lim_{x - > 0}( \frac{ \sin(3x) }{x} ) \frac{1}{2} lim_{x - > 0}( \frac{ \sin(3x) }{x} )](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B2%7D+lim_%7Bx+-+%26gt%3B+0%7D%28+%5Cfrac%7B+%5Csin%283x%29+%7D%7Bx%7D+%29+)
Aplique a regra de L'Hopital.
![\frac{1}{2} lim_{x - > 0}( \frac{ \cos(3x) \times 3 }{1} ) \frac{1}{2} lim_{x - > 0}( \frac{ \cos(3x) \times 3 }{1} )](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B2%7D+lim_%7Bx+-+%26gt%3B+0%7D%28+%5Cfrac%7B+%5Ccos%283x%29+%5Ctimes+3+%7D%7B1%7D+%29+)
Simplifique.
![\frac{1}{2} lim_{x - > 0}(3 \cos(3x) ) \frac{1}{2} lim_{x - > 0}(3 \cos(3x) )](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B2%7D+lim_%7Bx+-+%26gt%3B+0%7D%283+%5Ccos%283x%29+%29+)
Insira o valor.
![\frac{1}{2} \times 3 \cos(3 \times 0) \frac{1}{2} \times 3 \cos(3 \times 0)](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B2%7D+%5Ctimes+3+%5Ccos%283+%5Ctimes+0%29+)
Simplifique.
![\frac{3}{2} \frac{3}{2}](https://tex.z-dn.net/?f=+%5Cfrac%7B3%7D%7B2%7D+)
Espero ter te ajudado!
Simplifique usando:
Daí, obtemos:
Aplique a regra de L'Hopital.
Simplifique.
Insira o valor.
Simplifique.
Espero ter te ajudado!
Perguntas interessantes
História,
11 meses atrás
Geografia,
11 meses atrás
Matemática,
11 meses atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás