Matemática, perguntado por 07101991, 1 ano atrás

encontre o jacobiano de f(x,y)=(x^3;x+y)

Soluções para a tarefa

Respondido por Niiya
1
O jacobiano de uma função f:\mathbb{R}^{2}\to\mathbb{R}^{2} é definido por

J_{f}(x,y)=\det\left[\begin{array}{cc}\dfrac{\partial f_{1}}{\partial x}&\dfrac{\partial f_{1}}{\partial y}\\\\\dfrac{\partial f_{2}}{\partial x}&\dfrac{\partial f_{2}}{\partial y}\end{array}\right]

Onde f_{1},\,f_{2} são as componentes de f. Ou seja, f(x,y)=\big(f_{1}(x,y),\,f_{2}(x,y)\big)
_____________________________

Temos f(x,y)=\big(x^{3},\,x+y\big), logo

\bullet\,\,f_{1}(x,y)=x^{3}~~\Longrightarrow~~\dfrac{\partial f_{1}}{\partial x}(x,y)=3x^{2}~~~~e~~~~\dfrac{\partial f_{2}}{\partial y}(x,y)=0\\\\\\\bullet\,\,f_{2}(x,y)=x+y~~\Longrightarrow~~\dfrac{\partial f_{1}}{\partial x}(x,y)=1~~~e~~~\dfrac{\partial f_{2}}{\partial y}(x,y)=1

Daí, o jacobiano de f será o determinante:

J_{f}(x,y)=\det\left[\begin{array}{cc}3x^{2}&0\\1&1\end{array}\right]\\\\\\J_{f}(x,y)=3x^{2}\times1-0\times1\\\\J_{f}(x,y)=3x^{2}-0\\\\\boxed{\boxed{J_{f}(x,y)=3x^{2}}}
Perguntas interessantes