Encontrar a projeção de v sobre u.u=(1,2,_2) e v =(3,_2,1)
Soluções para a tarefa
Respondido por
1
Olá
![\vec{u}=(1, 2, -2)\\\\\vec{v}=(3, -2, 1) \vec{u}=(1, 2, -2)\\\\\vec{v}=(3, -2, 1)](https://tex.z-dn.net/?f=%5Cvec%7Bu%7D%3D%281%2C+2%2C+-2%29%5C%5C%5C%5C%5Cvec%7Bv%7D%3D%283%2C+-2%2C+1%29)
Podemos calcular a projeção de 'v' em 'u', a partir da seguinte fórmula
![\displaystyle Proj^{\vec{v}}_{\vec{u}}~=~ \frac{\vec{u}\cdot \vec{v}}{\vec{u}\cdot \vec{u}}\cdot \vec{u} \displaystyle Proj^{\vec{v}}_{\vec{u}}~=~ \frac{\vec{u}\cdot \vec{v}}{\vec{u}\cdot \vec{u}}\cdot \vec{u}](https://tex.z-dn.net/?f=%5Cdisplaystyle+Proj%5E%7B%5Cvec%7Bv%7D%7D_%7B%5Cvec%7Bu%7D%7D%7E%3D%7E+%5Cfrac%7B%5Cvec%7Bu%7D%5Ccdot+%5Cvec%7Bv%7D%7D%7B%5Cvec%7Bu%7D%5Ccdot+%5Cvec%7Bu%7D%7D%5Ccdot+%5Cvec%7Bu%7D+)
Substituindo os vetores
![\displaystyle Proj^{\vec{v}}_{\vec{u}}~=~\mathsf{ \frac{(1, 2, -2)\cdot (3, -2, 1)}{(1, 2, -2)\cdot (1, 2, -2)}\cdot (1, 2, -2) } \displaystyle Proj^{\vec{v}}_{\vec{u}}~=~\mathsf{ \frac{(1, 2, -2)\cdot (3, -2, 1)}{(1, 2, -2)\cdot (1, 2, -2)}\cdot (1, 2, -2) }](https://tex.z-dn.net/?f=%5Cdisplaystyle+Proj%5E%7B%5Cvec%7Bv%7D%7D_%7B%5Cvec%7Bu%7D%7D%7E%3D%7E%5Cmathsf%7B+%5Cfrac%7B%281%2C+2%2C+-2%29%5Ccdot+%283%2C+-2%2C+1%29%7D%7B%281%2C+2%2C+-2%29%5Ccdot+%281%2C+2%2C+-2%29%7D%5Ccdot+%281%2C+2%2C+-2%29+%7D)
Faz o produto escalar no numerador e no denominador
![\displaystyle Proj^{\vec{v}}_{\vec{u}}~=~\mathsf{ \frac{1\cdot 3+2\cdot(-2)-2\cdot 1}{1\cdot1+2\cdot2-2\cdot(-2)}\cdot (1, 2, -2) }\\\\\\\\Proj^{\vec{v}}_{\vec{u}}~=~\mathsf{ \frac{3-4-2}{1+4+4}\cdot (1, 2, -2) }\\\\\\\\Proj^{\vec{v}}_{\vec{u}}~=~\mathsf{ -\frac{1}{3}\cdot (1, 2, -2) }
\displaystyle Proj^{\vec{v}}_{\vec{u}}~=~\mathsf{ \frac{1\cdot 3+2\cdot(-2)-2\cdot 1}{1\cdot1+2\cdot2-2\cdot(-2)}\cdot (1, 2, -2) }\\\\\\\\Proj^{\vec{v}}_{\vec{u}}~=~\mathsf{ \frac{3-4-2}{1+4+4}\cdot (1, 2, -2) }\\\\\\\\Proj^{\vec{v}}_{\vec{u}}~=~\mathsf{ -\frac{1}{3}\cdot (1, 2, -2) }](https://tex.z-dn.net/?f=%5Cdisplaystyle+Proj%5E%7B%5Cvec%7Bv%7D%7D_%7B%5Cvec%7Bu%7D%7D%7E%3D%7E%5Cmathsf%7B+%5Cfrac%7B1%5Ccdot+3%2B2%5Ccdot%28-2%29-2%5Ccdot+1%7D%7B1%5Ccdot1%2B2%5Ccdot2-2%5Ccdot%28-2%29%7D%5Ccdot+%281%2C+2%2C+-2%29+%7D%5C%5C%5C%5C%5C%5C%5C%5CProj%5E%7B%5Cvec%7Bv%7D%7D_%7B%5Cvec%7Bu%7D%7D%7E%3D%7E%5Cmathsf%7B+%5Cfrac%7B3-4-2%7D%7B1%2B4%2B4%7D%5Ccdot+%281%2C+2%2C+-2%29+%7D%5C%5C%5C%5C%5C%5C%5C%5CProj%5E%7B%5Cvec%7Bv%7D%7D_%7B%5Cvec%7Bu%7D%7D%7E%3D%7E%5Cmathsf%7B+-%5Cfrac%7B1%7D%7B3%7D%5Ccdot+%281%2C+2%2C+-2%29+%7D%0A)
Agora multiplica o escalar -1/3 pelo vetor u
![\displaystyle Proj^{\vec{v}}_{\vec{u}}~=~\mathsf{ \left(-\frac{1}{3}\cdot 1,~-\frac{1}{3}\cdot 2,~- \frac{1}{3}\cdot (-2)\right) }\\\\\\\\\boxed{Proj^{\vec{v}}_{\vec{u}}~=~\mathsf{ \left(-\frac{1}{3},~-\frac{2}{3},~ \frac{2}{3}\right) }}\qquad\qquad\Longleftarrow\qquad\text{Esse e o vetor projecao} \displaystyle Proj^{\vec{v}}_{\vec{u}}~=~\mathsf{ \left(-\frac{1}{3}\cdot 1,~-\frac{1}{3}\cdot 2,~- \frac{1}{3}\cdot (-2)\right) }\\\\\\\\\boxed{Proj^{\vec{v}}_{\vec{u}}~=~\mathsf{ \left(-\frac{1}{3},~-\frac{2}{3},~ \frac{2}{3}\right) }}\qquad\qquad\Longleftarrow\qquad\text{Esse e o vetor projecao}](https://tex.z-dn.net/?f=%5Cdisplaystyle+Proj%5E%7B%5Cvec%7Bv%7D%7D_%7B%5Cvec%7Bu%7D%7D%7E%3D%7E%5Cmathsf%7B+%5Cleft%28-%5Cfrac%7B1%7D%7B3%7D%5Ccdot+1%2C%7E-%5Cfrac%7B1%7D%7B3%7D%5Ccdot++2%2C%7E-+%5Cfrac%7B1%7D%7B3%7D%5Ccdot+%28-2%29%5Cright%29+%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cboxed%7BProj%5E%7B%5Cvec%7Bv%7D%7D_%7B%5Cvec%7Bu%7D%7D%7E%3D%7E%5Cmathsf%7B+%5Cleft%28-%5Cfrac%7B1%7D%7B3%7D%2C%7E-%5Cfrac%7B2%7D%7B3%7D%2C%7E+%5Cfrac%7B2%7D%7B3%7D%5Cright%29+%7D%7D%5Cqquad%5Cqquad%5CLongleftarrow%5Cqquad%5Ctext%7BEsse+e+o+vetor+projecao%7D)
Podemos calcular a projeção de 'v' em 'u', a partir da seguinte fórmula
Substituindo os vetores
Faz o produto escalar no numerador e no denominador
Agora multiplica o escalar -1/3 pelo vetor u
Perguntas interessantes