Em um trabalho os funcionários foram identificados por letras de A até M em sequência, segundo o alfabeto da língua portuguesa. Os funcionários deverão ser agrupados de forma que os grupos contenham 3 componentes. Marque a alternativa que
apresente de quantas formas distintas poderá se formar os grupos de forma que não tenham duas letras consecutivas.
a)263
b)286
c)300
d)320
e)376
Soluções para a tarefa
Respondido por
0
Os grupos podem ser formados de 286 formas distintas, alternativa B!
1) Para resolver o problema em questão primeiramente devemos identificar quantas letras temos de A até M. Logo:
Total de letras = 13 letras
2) Por fim, o problema pede de quantas formas distintas podem ser formados grupos de 3 com esse total de letras. Assim, aplicando a fórmula de combinação teremos:
C13,3 = 13! / 3! * (13 - 3)!
C13,3 = 13 * 12 * 11 * 10! / 3 * 2 * 1 * 10!
C13,3 = 1716 / 6
C13,3 = 286
lucasmarinhopereira:
Rafael, pq a fatoração foi até o 10? C13,3: 13.12.11.10?
Perguntas interessantes
Português,
8 meses atrás
Português,
8 meses atrás
Inglês,
8 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás