Matemática, perguntado por Biank15ka, 1 ano atrás

em relação ao gráfico da função f=-X2+4x-3 , pode se afirmar :é uma parábola de concavidade voltada para cima, seu vértice é o ponto v (2,1);

Soluções para a tarefa

Respondido por Usuário anônimo
9
-x^2+4x-3

Trata-se de uma equação de 2º grau ax^2+bx+c=0

Vértice da equação de 2º grau é dado por:

V( -\frac{b}{2a},- \frac{delta}{4a} )  

Sendo

delta =b^2-4.a.c

No nosso caso 

a=-1   b=4   c=-3

Assim

delta = 16-4.(-1)(-3)= 16-12 = 4 \\  \\ V(- \frac{4}{2.(-1),- \frac{4}{4(-1)} } ) \\  \\ V(2,1)

Se a>0 a concavidade é voltada para cima

Se a<0 a concavidade é voltada para baixo

No nosso caso como a<0,  a=-1 a concavidade é voltada para baixo.

Assim nese caso o vértice é V(2,1) e a concavidade é virada para baixo.


Perguntas interessantes