Dois ângulos são suplementares. se a medida de um deles é 72° 15' 18", qual é a medida do outro?
Dois ângulos são suplementares e suas medidas são expressas por 2x-40° e x/2 +35°. Quanto medem esses dois ângulos?
Com explicação se possivel, por favor.
Soluções para a tarefa
Ângulos suplementares são aqueles que somados dão 180º.
º = grau / ' = minuto / " = segundo
Lembrando que o 60' (sessenta minutos) equivalem a 1º (um grau). E 60" (60 segundos) equivalem a 1' (um minuto).
No primeiro problema, a medida no outro ângulo é x, porque não sabemos. Sabemos que a medida do primeiro (72° 15' 18") mais o "x" = 180º.
---> 72° 15' 18" + X = 180
X = 180º - 72° 15' 18"
x = 180º 00' 00'' - 72° 15' 18" (grau subtrai com grau; minuto subtrai com minuto; segundo subtrai com segundo)
Começando pelos segundos: 00" é menor que 18", o que significa que ele terá que pegar "emprestado" dos minutos, porém os minutos também são 00', então ele vai pegar emprestado dos graus.
- 180 vai ficar 179 (pois perdeu 1º) e 00' vai ficar 60' (porque 1º equivale a 60 minutos). Vai ficar assim 179º 60' 00'' (agora é a hora dos 00" pegar "emprestado"). Os minutos perderão 1' e os segundos ganharão 60" (porque 1 minuto equivale a 60 segundos). Vai ficar assim: 179º 59' 60". Agora já dá pra subtrair.
Começando pelos segundos: 60" - 18" = 42"
Minutos: 59' - 15' = 44'
Grau: 179º - 72º = 107º.
O valor do outro ângulo (x) = 107º 44' 42".
No segundo problema, a soma dos dois ângulos também dão 180º, então pra saber, essa vai ser a equação:
Agora, descobrindo o valor de cada ângulo substituiindo o valor de x por 74:
1º ângulo: 2x - 40º = 2.74 - 40 = 108º
2º ângulo = 74/2 + 35º = 37 + 35 = 72º