Matemática, perguntado por larifidel96, 1 ano atrás

Do cardápio de uma festa constavam dez diferentes tipos de salgadinhos dos quais só quatro seriam servidos quentes. O garçom encarregado de arrumar a travessa e servi-la foi instruído para que a mesma contivesse sempre só 2 diferentes tipos de salgadinhos frios, e só 2 diferentes do quentes. De quantos modos diferentes, teve o garçom a liberdade de selecionar os salgadinhos para compor a travessa, respeitando as instruções?

Soluções para a tarefa

Respondido por victtormelb
149
combinatoria 
c6.2 e c4.2

6! / (6-2)! 2!
6x5x4 / 4! 2! ( cancela o 4 com 4 e o 2 com o 6 ) fica ->
3x5 = 15

agora com o c4.2
4! / (4-2) ! 2!
4x3x2 / 2! 2! ( cancela da mesma forma...
2x3 = 6

as formas possíveis são 6x15 = 90

Respondido por AlissonLaLo
59

\Large\boxed{\boxed{\boxed{{Ola\´\ Lari}}}}}

Exercício envolvendo combinação simples.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

São 10 diferentes tipos de salgados , dos quais 4 seriam servidos quentes , ou seja, os outros 6 seriam ''frios''. O garçom foi instruído para que a travessa contivesse sempre só 2 diferentes tipos de salgados quentes , ou seja , dos 4 disponíveis(quentes) , ele teria que escolher 2 , C₄,₂  ,  e somente dois frios dos 6 disponíveis C₆,₂ . Logo a questão pergunta : De quantos modos diferentes o garçom teve para compor a travessa ?

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Fórmula da combinação simples:

Cₐ,ₓ = a!/x!×(a-x)!

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Combinação dos quentes:

C₄,₂ = 4!/2!×(4-2)!                        

C₄,₂ = 4!/2!×2!                          

C₄,₂ = 4×3×2!/2!×2!                            

C₄,₂ = 4×3/2                                    

C₄,₂ = 12/2                                        

C₄,₂  = 6

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Agora a combinação dos frios:

C₆,₂ = 6!/2!×(6-2)!

C₆,₂ = 6!/2!×4!

C₆,₂ = 6×5×4!/2!×4!

C₆,₂ = 6×5/2

C₆,₂ = 30/2

C₆,₂ = 15

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Multiplicando as combinações de frios e quentes temos :

6×15 = 90

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Portanto são 90 modos diferentes.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!

Perguntas interessantes