Determine m de modo que as retas: 2x-3y+4=0 e mx+4y=0 sejam:
a) Paralelas b) Perpendiculares
Soluções para a tarefa
Respondido por
0
Retas paralelas possuem o mesmo coeficiente angular, por isso:
![2x-3y+4=0\\\\ 3y=2x+3\\\\ y=\frac{2x}{3}+\frac{4}{3} 2x-3y+4=0\\\\ 3y=2x+3\\\\ y=\frac{2x}{3}+\frac{4}{3}](https://tex.z-dn.net/?f=2x-3y%2B4%3D0%5C%5C%5C%5C+3y%3D2x%2B3%5C%5C%5C%5C+y%3D%5Cfrac%7B2x%7D%7B3%7D%2B%5Cfrac%7B4%7D%7B3%7D)
![mx+4y=0\\\\ -4y=mx\\\\ y=-\frac{mx}{4} mx+4y=0\\\\ -4y=mx\\\\ y=-\frac{mx}{4}](https://tex.z-dn.net/?f=mx%2B4y%3D0%5C%5C%5C%5C+-4y%3Dmx%5C%5C%5C%5C+y%3D-%5Cfrac%7Bmx%7D%7B4%7D)
Agora, basta igualar os termos que acompanham o x
![\frac{2}{3}=-\frac{m}{4}\\\\ \\\\ 2*4 = 3*-m\\\\ 8 = -3m\\\\ \boxed{m=-\frac{8}{3}} \frac{2}{3}=-\frac{m}{4}\\\\ \\\\ 2*4 = 3*-m\\\\ 8 = -3m\\\\ \boxed{m=-\frac{8}{3}}](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B3%7D%3D-%5Cfrac%7Bm%7D%7B4%7D%5C%5C%5C%5C+%5C%5C%5C%5C+2%2A4+%3D+3%2A-m%5C%5C%5C%5C+8+%3D+-3m%5C%5C%5C%5C+%5Cboxed%7Bm%3D-%5Cfrac%7B8%7D%7B3%7D%7D)
Retas perpendiculares
![m_r*m_s=-1\\\\ \frac{2}{3}*-\frac{m}{4}=-1\\\\ -\frac{2m}{12}=1\\\\ -2m=12\\\\ -m=\frac{12}{2}\\\\ \boxed{m=-6} m_r*m_s=-1\\\\ \frac{2}{3}*-\frac{m}{4}=-1\\\\ -\frac{2m}{12}=1\\\\ -2m=12\\\\ -m=\frac{12}{2}\\\\ \boxed{m=-6}](https://tex.z-dn.net/?f=m_r%2Am_s%3D-1%5C%5C%5C%5C+%5Cfrac%7B2%7D%7B3%7D%2A-%5Cfrac%7Bm%7D%7B4%7D%3D-1%5C%5C%5C%5C+-%5Cfrac%7B2m%7D%7B12%7D%3D1%5C%5C%5C%5C+-2m%3D12%5C%5C%5C%5C+-m%3D%5Cfrac%7B12%7D%7B2%7D%5C%5C%5C%5C+%5Cboxed%7Bm%3D-6%7D)
Agora, basta igualar os termos que acompanham o x
Retas perpendiculares
Perguntas interessantes
Ed. Moral,
1 ano atrás
Biologia,
1 ano atrás
Artes,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Artes,
1 ano atrás
Matemática,
1 ano atrás