Determine entre que números inteiros consecutivos fica cada uma destas raízes cúbicas não exatas:
Soluções para a tarefa
a. ∛10 fica entre ∛8 e ∛27, ou seja, 2 e 3.
b.∛70 fica entre ∛64 e ∛125, ou seja, 4 e 5.
c. ∛7 fica entre ∛1 e ∛8, ou seja, 1 e 2.
d.∛130 fica entre ∛125 e ∛216, ou seja, 5 e 6.
e.∛-30 fica entre ∛-27 e ∛-64, ou seja, -3 e -4.
f.∛1253 fica entre ∛1000 e ∛1331, ou seja, 10 e 11.
Para responder corretamente esse tipo de questão, devemos levar em consideração que:
- Os cubos perfeitos são números dos quais se extrairmos a raiz cúbica, o resultado será um número inteiro;
- Dado um radical qualquer, o resultado dele estará entre os resultados de dois radicais de cubos perfeitos;
Utilizando essas informações, os cubos perfeitos são:
0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, ... e seus negativos.
Temos então:
a) ∛10 está entre 2 e 3.
10 está entre 8 e 27, logo, ∛8 está entre ∛27 que são 2 e 3.
b) ∛70 está entre 4 e 5.
70 está entre 64 e 125 , logo, ∛64 está entre ∛125 que são 4 e 5.
c) ∛7 está entre 1 e 2.
7 está entre 1 e 8 , logo, ∛1 está entre ∛8 que são 1 e 2.
d) ∛130 está entre 5 e 6.
130 está entre 125 e 216, logo, ∛125 está entre ∛216 que são 5 e 6.
e) ∛-30 está entre -4 e -3.
-30 está entre -64 e -27, logo, ∛-64 está entre ∛-27 que são -4 e -3.
f) ∛1253 está entre 10 e 11.
1253 está entre 1000 e 1331, logo, ∛1000 está entre ∛1331 que são 10 e 11.
Leia mais em:
https://brainly.com.br/tarefa/19082409