Matemática, perguntado por cflash, 5 meses atrás

determine a matriz A=(aij)3*3, sabendo que, aij = i2+j

Soluções para a tarefa

Respondido por mlealrj
0

A=(a_{ij})_{3x3} =\left[\begin{array}{ccc}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{array}\right]

a_{ij}=i^{2}+j\\\\a_{11}=1^{2}+1=2\\\\a_{12}=1^{2}+2=3\\\\a_{13}=1^{2}+3=4\\\\a_{21}=2^{2}+1=5\\\\a_{22}=2^{2}+2=6\\\\a_{23}=2^{2}+3=7\\\\a_{31}=3^{2}+1=10\\\\a_{32}=3^{2}+2=11\\\\a_{33}=3^{2}+3=12

A=\left[\begin{array}{ccc}2&3&4\\5&6&7\\10&11&12\end{array}\right]

Perguntas interessantes