Matemática, perguntado por stellapb6, 4 meses atrás

Determine a equação da parábola que passa pelos pontos (1, –1), (2, –3) e (–2, –7).

Soluções para a tarefa

Respondido por elizeugatao
1

\displaystyle \sf \underline{\text{Equa{\c c}{\~a}o da Par{\'a}bola}} : \\\\ f(x) = ax^2+bx+c  \\\\ \text{temos os pontos } (1,-1) , \ (2,-3),\ (-2,-7) : \\\\ (1,-1) \to a.(1)^2+b.(1)+c =-1 \to a+b+c = -1 \\\\ (2,-3) \to a.(2)^2+b.(2)+c = -3 \to 4a+2b+c=-3   \\\\ (-2,-7)\to a.(-2)^2+b.(-2)+c = -7 \to 4a-2b+c=-7  \\\\\ Temos : \\\\ \left\{\begin{array}{I}\sf (1) \  a+b+c = -1 \\\\ \sf (2)\  4a+2b+c=-3 \\\\ \sf (3)\ 4a-2b+c=-7  \end{array}

\displaystyle \sf (2)-(1): \\\\  4a+2b+c -a-b-c = -3-(-1)=-3+1 \\\\ 3a+b=-2 \\\\\\ (3)-(2) :  \\\\ 4a-2b+c-4a-2b-c = -7-(-3)  = -7+3 \\\\ -4b = -4 \to \boxed{\sf b = 1} \\\\ Da{\'i}}:\\\\ 3a+b=-2 \\\\ 3a+1=-2 \\\\ 3a=-3 \to \boxed{\sf a =-1}\\\\ logo: \\\\ a+b+c= - 1 \\\\ -1+1+c = -1 \to \boxed{\sf c =-1} \\\\ Logo : \\\\ \huge\boxed{\sf f(x) = -x^2+x-1 }\checkmark

Anexos:
Perguntas interessantes