Matemática, perguntado por mari85mgta, 1 ano atrás

de quantos modos 3 pessoas podem se sentar em 5 cadeiras enfileiradas?

Soluções para a tarefa

Respondido por Juninhozinhoinho
0

nesse caso em que a ordem importa, usa-se arranjo, cuja fórmula é A(n,p)=n!/(n-p)!

aplicando fica:

A(5,3) = 5!/2! = 5*4*3 = 60 modos diferentes


mari85mgta: oi
mari85mgta: pode me ajuda em outra questão
Juninhozinhoinho: já existe uma resposta pra sua questão das cartas aqui mesmo no brainly resolvida pelo ilustre Manuel: https://brainly.com.br/tarefa/4406869
Respondido por manuel272
2

Resposta:

60 maneiras/modos

Explicação passo-a-passo:

.

=> Note que a "ordem" pela qual as pessoas se sentam é importante, assim este exercício deve ser resolvido por Arranjo Simples

...embora neste caso possa também ser resolvido por PFC

=> Resolução por Arranjo Simples ..definido por A(5,3)

A(5,3) = 5!/(5-3)!

A(5,3) = 5!/2!

A(5,3) = 5.4.3.2!/2!

A(5,3) = 5.4.3

A(5,3) = 60 maneiras/modos

=> Resolução por PFC

--> A 1ª pessoa tem 5 possibilidades de escolha

--> A 2ª pessoa tem 4 possibilidades de escolha

--> A 3ª pessoa tem 3 possibilidades de escolha

Donde resulta = 5.4.3 = 60 maneiras/modos

Espero ter ajudado

Se quiser praticar mais em outros exercícios semelhantes consulte as tarefas:

https://brainly.com.br/tarefa/12227767

https://brainly.com.br/tarefa/5974895

https://brainly.com.br/tarefa/7860886

https://brainly.com.br/tarefa/11596899

https://brainly.com.br/tarefa/4013614

Perguntas interessantes