De quantas maneiras podemos distribuir 10 moedas, todas idênticas, entre 7 crianças, de modo que cada criança receba pelo menos uma moeda?
RESPOSTA: 84
Soluções para a tarefa
Respondido por
20
=> Estamos perante um caso de Combinação Completa (com repetições)
Assim, neste caso especial em vez de C(p,n) ..teremos C((p-1),(n-1)) ...sendo obviamente "p" = número de moedas e "n" = número de crianças
Resolvendo:
C((p-1),(n-1)) = C((10-1),(7-1)) = C(9,6)
C(9,6) = 9!/6!(9-6)! = 9.8.7.6!/6!3! = 9.8.7/3! = 504/6 = 84 <--- resultado pedido
Espero ter ajudado
GustavoParreira:
Só aprendi a resolver daquele jeito que eu coloquei eu nunca vi a fórmula que você utilizou.Aonde têm a demonstração das duas fórmulas eu gostaria de saber de onde vem as fórmulas de a maioria das fórmulas de análise combinatória.São as matérias da matemática que eu menos gosto:Análise Combinatória e Geometria Plana e Espacial a geometria Analítica eu amo
Perguntas interessantes
Contabilidade,
9 meses atrás
Português,
9 meses atrás
História,
9 meses atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás