Dados os pontos A (5, -2, b (3,0), c(1/2,-5) E D(-8-3/4) determinem as coordenadas do ponto médio dos segmentos:
Soluções para a tarefa
Respondido por
2
A(5,-2) --> B(3,0)
===============
Pm = (x1 + x2/2 ; y1 + y2 /2 )
Pm = ( 5 + 3/2 ; -2 + 0/2 )
Pm = ( 8/2 ; -2/2 )
P(A,B) = ( 4 , -1 )
A(5,-2) --> C(1/2 , -5)
==================
Pm = ( 5+ 1/2 /2 , -2 + (-5)/2 )
Pm = ( 10/2 + 1/2/2 , -2 - 5/2 )
Pm (11/2/2 : -7/2 )
P(AC) = ( 11/4 , - 7/2 )
A(5,-2) --> D(-8 , -3/4)
===================
Pm = ( 5 + (-8)/2 ; -2 + (-3/4)/2)
Pm = ( 5 - 8/2 ; -2 - 3/4/2)
Pm = ( -3/2 ; -8/4 - 3/4 /2 )
Pm = ( -3/2 ; -11/4/2 )
P(AD) = ( -3/2 ; - 11/8 )
B(3,0) --> C(1/2,-5)
================
Pm = ( 3 + 1/2 /2 ; 0 + (-5) /2)
Pm = ( 6/2 + 1/2 /2 ; 0 -5/2)
Pm = ( 7/2/2 ; -5/2)
P(BC) = (7/4 ; - 5/2)
B(3,0) --> D(-8 ; - 3/4)
==================
Pm = ( 3+ (-8)/2 ; 0+ (-3/4)/2 )
Pm = ( 3 - 8/2 ; 0 - 3/4/2 )
Pm = ( -5/2 ; -3/4/2)
P(BD) = ( -5/2 ; - 3/8)
C(1/2,-5) --> D(-8 , -3/4)
====================
Pm = (1/2 + (-8)/2 ; -5 + (-3/4)/2)
Pm = ( 1/2 - 8 /2 ; -5 - 3/4 /2)
Pm = ( 1/2 - 16/2 /2 ; -20/4 - 3 /4 /2)
Pm = ( -15/2/2 ; - 23 /4/2)
P(CD) = ( - 15/4 ; - 23/ 8)
===============
Pm = (x1 + x2/2 ; y1 + y2 /2 )
Pm = ( 5 + 3/2 ; -2 + 0/2 )
Pm = ( 8/2 ; -2/2 )
P(A,B) = ( 4 , -1 )
A(5,-2) --> C(1/2 , -5)
==================
Pm = ( 5+ 1/2 /2 , -2 + (-5)/2 )
Pm = ( 10/2 + 1/2/2 , -2 - 5/2 )
Pm (11/2/2 : -7/2 )
P(AC) = ( 11/4 , - 7/2 )
A(5,-2) --> D(-8 , -3/4)
===================
Pm = ( 5 + (-8)/2 ; -2 + (-3/4)/2)
Pm = ( 5 - 8/2 ; -2 - 3/4/2)
Pm = ( -3/2 ; -8/4 - 3/4 /2 )
Pm = ( -3/2 ; -11/4/2 )
P(AD) = ( -3/2 ; - 11/8 )
B(3,0) --> C(1/2,-5)
================
Pm = ( 3 + 1/2 /2 ; 0 + (-5) /2)
Pm = ( 6/2 + 1/2 /2 ; 0 -5/2)
Pm = ( 7/2/2 ; -5/2)
P(BC) = (7/4 ; - 5/2)
B(3,0) --> D(-8 ; - 3/4)
==================
Pm = ( 3+ (-8)/2 ; 0+ (-3/4)/2 )
Pm = ( 3 - 8/2 ; 0 - 3/4/2 )
Pm = ( -5/2 ; -3/4/2)
P(BD) = ( -5/2 ; - 3/8)
C(1/2,-5) --> D(-8 , -3/4)
====================
Pm = (1/2 + (-8)/2 ; -5 + (-3/4)/2)
Pm = ( 1/2 - 8 /2 ; -5 - 3/4 /2)
Pm = ( 1/2 - 16/2 /2 ; -20/4 - 3 /4 /2)
Pm = ( -15/2/2 ; - 23 /4/2)
P(CD) = ( - 15/4 ; - 23/ 8)
Perguntas interessantes