Matemática, perguntado por tecctoscano8081, 1 ano atrás

Dada a função f(x,y,z)=sen(y+2z)+ln(xyz) + cos (x+2x)encontre (∂f∂x)+(∂f∂x)+(∂f∂z)

Soluções para a tarefa

Respondido por EngLucasSa
0
f(x,y,z)= sen(y+2z)+ln(xyz)
∂f/∂y significa que x e z são constantes
∂f/∂x significa quey e z são constantes
∂f/∂z significa que x e y são constantes

sabendo disso:


 \frac{\partial f}{\partial x} =0 +  \frac{1}{xyz}*(xyz)' \\\\ \frac{\partial f}{\partial x} =  \frac{1}{xyz}*(1yz) \\\\   \frac{\partial f}{\partial x} = \frac{yz}{xyz} = \frac{1}{x}\\\\ 
\frac{\partial f}{\partial y} = cos(y+2z)*(y+2z)'+ \frac{1}{xyz}* (xyz) '\\\\ \frac{\partial f}{\partial y} = cos(y+2z)*(1+0)+ \frac{1}{xyz}* (x*1*z)'\\\\ \frac{\partial f}{\partial y} = cos(y+2z)+ \frac{1}{y}\\\\


\frac{\partial f}{\partial z} = cos(y+2z)*(y+2z)'+ \frac{1}{xyz}* (xyz) '\\\\ \frac{\partial f}{\partial z} = cos(y+2z)*(0+2*1)+ \frac{1}{xyz}* (xy*1) \\\\  \frac{\partial f}{\partial z} = 2*cos(y+2z)+ \frac{1}{z}

\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z} =\frac{1}{x}+cos(y+2z)+ \frac{1}{y}+2*cos(y+2z)+ \frac{1}{z} \\\\ \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z} = 3cos(y+2z)+  \frac{1}{x}+ \frac{1}{y}+ \frac{1}{z}   \\\\\boxed{\boxed{ \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z} = 3cos(y+2z)+ \frac{yz+xz+xy}{xyz} }}


Perguntas interessantes