Como resolver o limite da seguinte equação Lim (X^3+1)/(X^2+4X+3)
para x tendendo a infinito
Soluções para a tarefa
Respondido por
0
ax²+bx+c=a*(x-x')*(x-x'')
x²+4x+3=0 ..tem como raízes x'=-3 e x''=-1
x²+4x+3=(x+1)(x+3)
(x+1)³=x³+1+3x(x+1)
x³+1=(x+1)³-3x(x+1)
x³+1=(x+1)*[(x+1)²-3x]
x³+1=(x+1)* (x²-x+1)
Lim (X^3+1)/(X^2+4X+3)
x-->∞
Lim (x+1)* (x²-x+1) / (x+1)(x+3)
x-->∞
Lim (x²-x+1) / (x+3)
x-->∞
Lim x²(1-1/x+1/x²) / x²(1/x+3/x)
x-->∞
Lim (1-1/x+1/x²) / (1/x+3/x) = 1/0 = ∞
x-->∞
x²+4x+3=0 ..tem como raízes x'=-3 e x''=-1
x²+4x+3=(x+1)(x+3)
(x+1)³=x³+1+3x(x+1)
x³+1=(x+1)³-3x(x+1)
x³+1=(x+1)*[(x+1)²-3x]
x³+1=(x+1)* (x²-x+1)
Lim (X^3+1)/(X^2+4X+3)
x-->∞
Lim (x+1)* (x²-x+1) / (x+1)(x+3)
x-->∞
Lim (x²-x+1) / (x+3)
x-->∞
Lim x²(1-1/x+1/x²) / x²(1/x+3/x)
x-->∞
Lim (1-1/x+1/x²) / (1/x+3/x) = 1/0 = ∞
x-->∞
Perguntas interessantes
Matemática,
10 meses atrás
Informática,
10 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás