Matemática, perguntado por daniel7730, 10 meses atrás

como funciona álgebra? por favor me ajudem, quero aprender, só tenho 10 anos​

Soluções para a tarefa

Respondido por MarianaMiralha
0

Explicação passo-a-passo:

O QUE É ÁLGEBRA?

O QUE É?

O que é álgebra? Trata-se do ramo da Matemática que testa e comprova as operações básicas e as relações entre conjuntos numéricos.

Álgebra é o ramo da Matemática que generaliza a aritmética. Isso significa que os conceitos e operações provenientes da aritmética (adição, subtração, multiplicação, divisão etc.) serão testados e sua eficácia será comprovada para todos os números pertencentes a determinados conjuntos numéricos.

A operação “adição”, por exemplo, realmente funciona em todos os números pertencentes ao conjunto dos números naturais? Ou existe algum número natural muito grande, próximo ao infinito, que se comporta de maneira diferente dos demais ao ser somado? A resposta para essa pergunta é dada pela álgebra: Primeiramente, é definido o conjunto dos números naturais e a operação soma; depois, é comprovado que a operação soma funciona para qualquer número natural.

Nos estudos de álgebra, letras são utilizadas para representar números. Essas letras tanto podem representar números desconhecidos quanto um número qualquer pertencente a um conjunto numérico. Se x é um número par, por exemplo, então x pode ser 2, 4, 6, 8, 10,.... Dessa maneira, x é um número qualquer pertencente ao conjunto dos números pares e fica evidente o tipo de número que x é: um múltiplo de 2.

Propriedades das operações matemáticas

Sabendo que um número qualquer pertencente a um conjunto pode ser representado por uma letra, considere os números x, y e z como pertencentes ao conjunto dos números reais e as operações adição e multiplicação representadas por “+” e “·”, respectivamente. Então, as seguintes propriedades são válidas para x, y e z:

1 – Associatividade

(x + y) + z = x + (y + z)

(x·y)·z = x·(y·z)

2 – Comutatividade

x + y = y + x

x·y = y·x

3 – Existência de elemento neutro (1 para a multiplicação e 0 para a adição)

x + 0 = x

x·1 = x

4 – Existência de elemento oposto (ou simétrico).

x + (– x) = 0

x· 1 = 1

x

5 – Distributividade (também chamada de propriedade distributiva da multiplicação sobre a adição)

x·(y + z) = x·y + x·z

Essas cinco propriedades são válidas para todos os números reais x, y e z, uma vez que essas letras foram usadas para representar qualquer número real. Elas também são válidas para as operações adição e multiplicação.

Expressões algébricas

Na Matemática, expressão é a uma sequência de operações matemáticas realizadas com alguns números. Por exemplo: 2 + 3 – 7 é uma expressão numérica. Quando essa expressão envolve números desconhecidos (incógnitas), ela é chamada de expressão algébrica. Uma expressão algébrica que possui apenas um termo é chamada de monômio. Qualquer expressão algébrica que seja resultado de soma ou subtração entre dois monômios é chamada de polinômio.

Expressões algébricas, monômios e polinômios são exemplos de elementos pertencentes à álgebra, pois são constituídos a partir de operações realizadas com números desconhecidos. Lembre-se de que um número desconhecido pode representar qualquer número de um conjunto numérico.

Equações

Equações são expressões algébricas que possuem uma igualdade. Dessa forma, equação é um conteúdo da Matemática que relaciona números a incógnitas por intermédio de uma igualdade.

A presença da incógnita é o que classifica a equação como expressão algébrica. A presença da igualdade permite encontrar a solução de uma equação, isto é, o valor numérico da incógnita.

Exemplos

1) 2x + 4 = 0

2) 4x – 4 = 19 – 8x

3) 2x2 + 8x – 9 = 0

Funções

A definição formal de função é a seguinte: função é uma regra que relaciona cada elemento de um conjunto a um único elemento de um segundo conjunto.

Essa regra é matematicamente representada por uma expressão algébrica que possui uma igualdade, mas que relaciona incógnita a incógnita. Esta é a diferença entre função e equação: a equação relaciona uma incógnita a um número fixo; na função, a incógnita representa todo um conjunto numérico. Por esse motivo, dentro de funções, as incógnitas são chamadas de variáveis, já que elas podem assumir qualquer valor dentro do conjunto que representam.

Como envolve expressões algébricas, função é também um conteúdo pertencente à Álgebra, uma vez que as letras representam qualquer número pertencente a um conjunto de números qualquer.

Perguntas interessantes