Matemática, perguntado por dtariana949, 1 ano atrás

como acho o resultado dessa conta usando bhaskarax²-11y=45 x=2y

Soluções para a tarefa

Respondido por viniciusredchil
0
x=2y
y= \frac{x}{2}

x^2-11y=45
x^2-11* \frac{x}{2} =45
x^2- \frac{11}{2} x-45=0
(a=1;b= -\frac{11}{2} ;c=-45)

\Delta  = b^2-4ac
\Delta  = (- \frac{11}{2}) ^2-4*1*(-45)
\Delta  =  \frac{121}{4} +180
\Delta  =  \frac{121+4*(180)}{4}
\Delta  =  \frac{121+720}{4}
\Delta  =  \frac{841}{4}

x= \frac{-b \pm  \sqrt{\Delta} }{2a}
x= \frac{-(- \frac{11}{2})  \pm  \sqrt{ \frac{841}{4} } }{2*1}
x= \frac{\frac{11}{2}  \pm  \sqrt{ \frac{29^2}{2^2} } }{2}
x= \frac{\frac{11}{2}  \pm   \frac{29}{2} }{2}
x= \frac{\frac{11\pm 29}{2}}{2}
x=\frac{11\pm 29}{4}}

 \left \{ {{x_1= \frac{11+29}{4}= \frac{40}{4}=10  } \atop {x_2= \frac{11-29}{4}= \frac{-18}{4}= \frac{-9}{2}=-4.5   }} \right.

 \left \{ {{y_1= \frac{x_1}{2}= \frac{10}{2}=5  } \atop {y_2= \frac{x_2}{2}= \frac{-4.5}{2}=-2.25  }} \right.

S=\{(10;5);(-4.5;-2.25)\}
Perguntas interessantes