Cézar aplicou um capital a juros compostos, durante dois anos e meio, e recebeu de juros 40% do capital aplicado. Qual a taxa mensal de juros?
Soluções para a tarefa
Respondido por
6
Vamos lá...
Sabemos que J = PV * [(1 + i)^n - 1]
onde,
J = juros
PV = valor presente
i = taxa de juros
n = prazo
Logo, precisamos de duas informações pra resolver o problema:
I) 2 anos e meio é a mesma coisa que 30 meses
II) se os juros correspondem a 40% do capital, temos que J = 0,4*PV
Assim,
J = PV * [(1 + i)^n - 1]
0,4*PV = PV * [(1 + i)^30 - 1] -> Aqui eu posso cancelar PV dos dois lados !!!
0,4 = (1 + i)^30 - 1
1,4 = (1 + i)^30 -> Aqui você precisa tirar a raiz 30 dos dois lados !!!
Raiz 30 de 1,4 = Raiz 30 de (1 + i)^30
1,011279 = 1 + i
0,011279 = i
Ou seja,
i = 1,1279% ao mês !!!
Espero ter ajudado !
Sabemos que J = PV * [(1 + i)^n - 1]
onde,
J = juros
PV = valor presente
i = taxa de juros
n = prazo
Logo, precisamos de duas informações pra resolver o problema:
I) 2 anos e meio é a mesma coisa que 30 meses
II) se os juros correspondem a 40% do capital, temos que J = 0,4*PV
Assim,
J = PV * [(1 + i)^n - 1]
0,4*PV = PV * [(1 + i)^30 - 1] -> Aqui eu posso cancelar PV dos dois lados !!!
0,4 = (1 + i)^30 - 1
1,4 = (1 + i)^30 -> Aqui você precisa tirar a raiz 30 dos dois lados !!!
Raiz 30 de 1,4 = Raiz 30 de (1 + i)^30
1,011279 = 1 + i
0,011279 = i
Ou seja,
i = 1,1279% ao mês !!!
Espero ter ajudado !
Respondido por
8
Capital (C): x
Prazo (n): 2,5 anos
Juros (J): 40x/100
Taxa (i): ?
Isto é, 14,40% ao ano. Não podemos esquecer que, em se tratando de juros compostos devemos fazer a conversão da taxa aplicando os conceitos de "taxa equivalente". Segue que,
Ou seja, 1,13% ao mês.
Prazo (n): 2,5 anos
Juros (J): 40x/100
Taxa (i): ?
Isto é, 14,40% ao ano. Não podemos esquecer que, em se tratando de juros compostos devemos fazer a conversão da taxa aplicando os conceitos de "taxa equivalente". Segue que,
Ou seja, 1,13% ao mês.
Perguntas interessantes
Português,
9 meses atrás
Matemática,
9 meses atrás
Português,
9 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Informática,
1 ano atrás