Calcule os nove primeiros termos da sequência definida por a n = 7 n -1(n € N*)
Soluções para a tarefa
n pertence a N* (Naturais não-nulos).
Logo:
7 . 1 - 1 = 7 - 1 = 6
7 . 2 - 1 = 14 - 1 = 13
7 . 3 - 1 = 21 - 1 = 20
7 . 4 - 1 = 28 - 1 = 27
7 . 5 - 1 = 35 - 1 = 34
7 . 6 - 1 = 42 - 1 = 41
7 . 7 - 1 = 49 - 1 = 48
7 . 8 - 1 = 56 - 1 = 55
7 . 9 - 1 = 63 - 1 = 62
Os nove primeiros termos da sequência são: 6, 13, 20, 27, 34, 41, 48, 55, 62.
Resposta:
Explicação passo-a-passo:
Temos que
an = 7n - 1, com n ∈ N*
Para n = 1 => a₁ = 7.1 - 1 = 7 - 1 = 6
Para n = 2 => a₂ = 7.2 - 1 = 14 - 1 = 13
Para n = 3 => a₃ = 7.3 - 1 = 21 - 1 = 20
Para n = 4 => a₄ = 7.4 - 1 = 28 - 1 = 27
Para n = 5 => a₅ = 7.5 - 1 = 35 - 1 = 34
Para n = 6 => a₆ = 7.6 - 1 = 42 - 1 = 41
Para n = 7 => a₇ = 7.7 - 1 = 49 - 1 = 48
Para n = 8 => a₈ = 7.8 - 1 = 56 -1 = 55
Para n = 9 => a₉ = 7.9 - 1 = 63 - 1 = 62
Portanto, a sequência é: (6, 13, 20, 27, 34, 41, 48, 55, 62)