Matemática, perguntado por jaternura, 4 meses atrás

Calcule o valor da expressão a seguir:

Anexos:

Soluções para a tarefa

Respondido por Skoy
6

O resultado dessa expressão é:

          \Large\displaystyle\text{$\begin{gathered}  \sf\frac{\sin\left(\frac{3\pi}{2}\right)+\cos(\pi )+5\sin \left(\frac{\pi}{2}\right)}{3\cos\left(\frac{\pi}{2} \right)+\cos (2\pi )-\sin (2\pi )} = 3\end{gathered}$}

Desejamos calcular a seguinte expressão:

\Large\displaystyle\text{$\begin{gathered} \sf\frac{\sin\left(\frac{3\pi}{2}\right)+\cos(\pi )+5\sin \left(\frac{\pi}{2}\right)}{3\cos\left(\frac{\pi}{2} \right)+\cos (2\pi )-\sin (2\pi )} \end{gathered}$}

Passando de radianos para graus, temos que;

\Large\displaystyle\text{$\begin{gathered} \sf\frac{\sin\left(270^{\circ}\right)+\cos(180^{\circ} )+5\sin \left(90^{\circ}\right)}{3\cos\left(90^{\circ}\right)+\cos (360^{\circ} )-\sin (360^{\circ} )} \end{gathered}$}

Agora, com ajuda do ciclo trigonométrico ( em anexo ), temos que:

\Large\displaystyle\text{$\begin{gathered}  \sf\frac{\sin\left(\frac{3\pi}{2}\right)+\cos(\pi )+5\sin \left(\frac{\pi}{2}\right)}{3\cos\left(\frac{\pi}{2} \right)+\cos (2\pi )-\sin (2\pi )} = \frac{-1-1+5(1)}{3(0)+1-0} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}  \sf\frac{\sin\left(\frac{3\pi}{2}\right)+\cos(\pi )+5\sin \left(\frac{\pi}{2}\right)}{3\cos\left(\frac{\pi}{2} \right)+\cos (2\pi )-\sin (2\pi )} = \frac{-2+5}{1} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \therefore \green{\underline{\boxed{ \sf\frac{\sin\left(\frac{3\pi}{2}\right)+\cos(\pi )+5\sin \left(\frac{\pi}{2}\right)}{3\cos\left(\frac{\pi}{2} \right)+\cos (2\pi )-\sin (2\pi )} = 3}}}\ \ \ (\checkmark).\end{gathered}$}

Veja mais sobre:

  • brainly.com.br/tarefa/46838908
Anexos:
Perguntas interessantes