Calcule o cosseno de -33π/4 e explique passo a passo como vc chegou a essa conclusão
Soluções para a tarefa
Resposta:
Cosseno de - 33π/4 = √2 / 2
Explicação passo-a-passo:
Cos ( - 33 π ) /4
A seguir vou analisar que ângulo é -33π / 4.
Dividindo - 33 π por 4 , que é a fração que dá o ângulo,
vemos que dá - 8,25 π . Cada volta completa ao circulo trigonométrico é igual a 2π ou a - 2π , conforme se anda, respetivamente, para a esquerda ou direita partindo do ângulo zero.
Assim - 8,25 π = - 8 π - 0,25 π . Mas - 8 π = - 4 * 2π logo são 4 voltas completas ao circulo trigonométrico, voltando ao ângulo zero. Então só interessa analisar o ângulo - 0,25 π = - 25 /100 *π = menos um quarto de π ou - π / 4 .
Analisando, sobre a forma de fração, o ângulo:
33 - 32 - 1 32 π π π
- ------ π = ----------- π = - ------ π - ----- = - 8 π - ----- = - ( 4 * 2 π ) - -----
4 4 4 4 4 4
Mas - ( 4 * 2 π ) são 4 voltas inteiras, ao circulo trigonométrico, no sentido dos ponteiros do relógio, regressando ao ângulo zero.
Assim basta calcular o cos ( - π / 4 ).
Este ângulo está no 4º quadrante.
O cosseno tem o mesmo valor para ângulos do 4º ou 1º quadrantes
Logo cos ( - π / 4 ) = cos ( π / 4 ) = √2 / 2
Sinais:
( * ) multiplicar ( / ) dividir
Espero ter ajudado bem.
********************************
Se tiver alguma dúvida contacte-me pelos Comentários da pergunta.
Bom estudo e um bom resto de dia para si